检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业的“/cache”目录是否安全? ModelArts训练作业的程序运行在容器中,容器挂载的目录地址是唯一的,只有运行时的容器能访问到。因此训练作业的“/cache”是安全的。 父主题: 创建训练作业
场景介绍及环境准备 场景介绍 DiT(Diffusion Transformers)模型是一种将Transformer架构引入扩散模型的新方法。传统的扩散模型通常使用U-Net架构,而DiT模型则用Transformer替代了U-Net,处理图像生成和去噪等任务。核心思想是通过T
如手机,邮箱等,AI Gallery会在数据库中做加密处理。 AI Gallery的更多介绍请参见《AI Gallery》。 父主题: 安全
Cluster资源时,可能会导致资源池部分功能异常。下表可帮助您定位异常出现的原因,风险操作包括但不限于以下内容。 高危操作风险等级说明: 高:对于可能直接导致业务失败、数据丢失、系统不能维护、系统资源耗尽的高危操作。 中:对于可能导致安全风险及可靠性降低的高危操作。 低:高、中风险等级外的其他高危操作。 表1 操作及其对应风险
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
conda环境、配置Notebook依赖。 推荐使用Dockerfile的方式构建镜像。这样既满足dockerfile可追溯及构建归档的需求,也保证镜像内容无冗余和残留。 每层构建的时候都尽量把tar包等中间态文件删除,保证最终镜像更小,清理缓存的方法可参考:conda clean。
文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“csv”文件格式,文件内容以换行符(即字符“\n”,或称为LF)分隔各行,行内容以英文逗号(即字符“
线下容器镜像构建及调试 构建容器镜像并调试 镜像构建及调试与单机单卡相同。 具体操作,请参考线下容器镜像构建及调试。 上传镜像 请参考单机单卡训练的上传镜像章节操作。 父主题: 多机多卡
哪里可以了解Atlas800训练服务器硬件相关内容 场景描述 本文提供Atlas800训练服务器硬件相关指南,包括三维视图、备件信息、HCCL常用方法以及网卡配置信息。 Atlas 800训练服务器三维视图 Atlas 800 训练服务器(型号9000)是基于华为鲲鹏920+Sn
Branch展开所有分支,单击相应分支名称可完成切换。 查看修改的内容 如果修改代码库中的某个文件,在“Changes”页签的“Changed”下可以看到修改的文件,并单击修改文件名称右侧的“Diff this file”,可以看到修改的内容。 图7 查看修改的内容 提交修改的内容 确认修改无误后,单击修改文件名称右侧的“Stage
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证
advisor插件的昇腾PyTorch性能调优步骤 基于ModelArts performance advisor插件的昇腾PyTorch性能调优主要分为以下步骤: 准确采集性能劣化时刻的profiling数据。 存储profiling数据。 创建advisor分析环境。 操作步骤 明确性能问题类型,准
像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件安装步骤,您可针对需要安装的软件查看对应的内容: 安装NVIDIA驱动 安装CUDA驱动 安装Docker 安装nvidia-fabricmanager 以下提供常见
按标签名称删除标签及仅包含此标签的文件 功能介绍 按标签名称删除标签及仅包含此标签的文件。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{p
型,将所得的模型部署为在线服务。其他算法操作步骤类似,可参考“ResNet_v1_50”算法操作。 步骤1:准备训练数据 步骤2:订阅算法 步骤3:使用订阅算法创建训练作业 步骤4:创建AI应用 步骤5:部署为在线服务(CPU) 步骤6:清除资源 费用说明:本案例使用过程中,从AI
相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。 根据节点功能选择相应的代码模板,进行内容的补充。 根据DAG结构编排节点,完成Workflow的编写。
MiniCPM-V2.0推理及LoRA微调基于DevServer适配PyTorch NPU指导(6.3.910) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对MiniCPM-V2.0进行LoRA微调及推理。本文档中提供的训练脚本,是基
完成准备工作。本案例的步骤如下所示: 步骤1:安装和登录PyCharm ToolKit 步骤2:使用PyCharm进行本地开发调试 步骤3:使用ModelArts Notebook进行开发调试 步骤4:使用PyCharm提交训练作业至ModelArts 步骤5:清除相应资源 准备工作
AI Gallery是在ModelArts的基础上构建的开发者生态社区,提供算法、模型、数据集等内容的共享,为高校科研机构、模型开发商、解决方案集成商、企业级个人开发者等群体,提供安全、开放的共享,加速AI资产的开发与落地。 发布至AI Gallery的资产是免费的,只需要支付在