检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地。AI开发并不是一个单向的流水线作业,在开发的过程中,会根据数据和模型结果进行多轮的实验迭代。算法
ppk文件”(由Step2密钥对.pem文件生成)。 单击“Open”。如果首次登录,PuTTY会显示安全警告对话框,询问是否接受服务器的安全证书。单击“Accept”将证书保存到本地注册表中。 图6 询问是否接受服务器的安全证书 成功连接到云上Notebook实例。 图7 连接到云上Notebook实例
数据集:下拉选择已下载的数据集(步骤2中已成功导入的数据集,默认为下拉数据集列表中的第一个数据集)。 输出路径:选择步骤2的3中的数据集输出位置。 训练规格:根据您的实际需要选择对应的训练规格。 确认无误后单击右下角“创建项目”可自动跳转至自动学习的运行总览页面。 步骤四:运行工作流 在自动
Please install mmcv>=1.3.1, <=1.5.0。 原因分析 MMCV的依赖与PyTorch版本不匹配。 处理方法 可参考链接的内容,根据PyTorch和CUDA版本安装对应版本的MMCV。 父主题: 预置算法运行故障
提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。支持自动驾驶场景PB级数据下模型高效训练,助力自动驾驶特有的感知、规控、仿真生成等全链路相关算法深度优化并快速迭代。 内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方
ric-manager软件包。 步骤一:安装Docker 使用Docker官方脚本安装最新版Docker: curl https://get.docker.com | sh sudo systemctl --now enable docker 步骤二:安装NVIDIA容器工具集 设置仓库地址和GPG
es={"请求参数":("文件路径",文件内容,“文件类型”)}”,参数填写可以参考表1。 表1 files参数说明 参数 是否必填 说明 请求参数 是 在线服务输入参数名称。 文件路径 否 上传文件的路径。 文件内容 是 上传文件的内容。 文件类型 否 上传文件类型。当前支持以下类型:
在本地安装ModelArts SDK,具体的配置步骤如下: 步骤一:下载ModelArts SDK 步骤二:配置运行环境 步骤三:安装ModelArts SDK ModelArts SDK支持安装在Windows和Linux操作系统中。 如果在Windows上安装ModelArts SDK
更多选项 内容审核 选择是否打开内容审核,默认启用。 开关打开(默认打开),内容审核可以阻止模型推理中的输入输出中出现不合规的内容,但可能会对接口性能产生较大影响。 开关关闭,停用内容审核服务,将不会审核模型推理中的输入输出,模型服务可能会有违规风险,请谨慎关闭。 关闭“内容审核”开
原因分析 从日志报错信息No CUDA runtime is found分析,是cuda runtime没有找到。 处理方法 建议您按以下步骤排查处理: 确认部署在线服务时是否选择了GPU规格。 在customize_service.py中添加一行代码os.system('nvcc
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且No
到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型 在训练开始前,需要修改glm4-9b模型中的tokenizer文件modeling_chatglm.py内容,具体步骤如下: 进入到
到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型 在训练开始前,需要修改glm4-9b模型中的tokenizer文件modeling_chatglm.py内容,具体步骤如下: 进入到
到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ glm4-9b模型 在训练开始前,需要修改glm4-9b模型中的tokenizer文件modeling_chatglm.py内容,具体步骤如下: 进入到
1机1卡Vnt1 10 197:25:03 1机8卡Vnt1 10 26:10:25 4机8卡Vnt1 10 07:08:44 表3 训练各步骤性能参考 步骤 说明 时长 镜像下载 首次下载镜像的时间(25G)。 8分钟 资源调度 点创建训练任务开始到变成运行中的时间(资源充足、镜像已缓存)。
指令监督微调,复制tune_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练,复制dpo_yaml样例模板内容覆盖demo.yaml文件内容。 PPO强化训练,先进行RM奖励训练任务后,复制ppo_yaml样例模板内容覆盖demo.yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo
tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config
tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且No
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且No