检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当前推理业务的操作系统及版本,如:Ubuntu 22.04。 是否使用容器化运行业务,以及容器中OS版本,HostOS中是否有业务软件以及HostOS的类型和版本。 需要评估是否愿意迁移到华为云的通用OS。 - AI引擎及版本 当前引擎(TF/PT/LibTorch),是否接受切换MindSpore。
} ] } } 配置文件 代码中request结构和response结构中的data参数是json schema数据结构。data/properties里面的内容对应“模型输入”和“模型输出”。 1 2 3 4 5 6 7 8 9 10 11
可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。 如果下载报错“Not Found”,请下载别的版本VS Code重新在本地安装,目前推荐: Vscode-1
/pile-val", split="validation") 运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers sentencepiece #安装量化工具依赖 export
源代码:chatglm-6B 模型权重:weights 数据集:Firefly(流萤)、ADGEN (广告生成) 源代码、模型权重使用的清华官方在Github和Hugging Face开源的版本,源代码适配的main分支,权重当前使用1d240ba固定分支。其他分支版本理论上也可以进行迁移工作,不过
具体支持如下使用场景: 下载单个文件 下载多个文件 下载文件到指定路径 下载单个AI Gallery仓库 准备工作 获取“repo_id”和待下载的文件名。 获取“repo_id” 在AI Gallery页面的资产详情页,单击复制完整的资产名称,如图1所示,获取到的信息即为“re
练作业时,ModelArts后台自动将Ascend驱动程序放置在/usr/local/Ascend/driver目录。 X86 CPU架构和ARM CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect
提交代码至GitHub仓库 完成上述操作后,可以在JupyterLab的git插件页面的History页签,看到“origin/HEAD”和“orgin/master”已指向最新一次的提交。同时在GitHub对应仓库的commit记录中也可以查找到对应的信息。 父主题: 通过Ju
json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤:
json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤:
outputs=outputs, cluster_id="cluster_id_xxx" #MRS集群ID ) 使用选取集群和启动脚本的形式 from modelarts import workflow as wf # 通过MrsJobStep来定义一个节点 run_arg_description
json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤:
r1/') 异常处理 通过OBS下载文件到Notebook中时,提示Permission denied。请依次排查: 请确保读取的OBS桶和Notebook处于同一站点区域,例如:都在华北-北京四站点。不支持跨站点访问OBS桶。具体请参见查看OBS桶与ModelArts是否在同一个区域。
──╯ 具体支持如下使用场景: 上传单个文件 上传多个文件 上传单个文件到指定仓库目录 上传整个文件夹 准备工作 获取“repo_id”和待上传的文件名。 获取“repo_id” 在AI Gallery页面的资产详情页,单击复制完整的资产名称,如图1所示,获取到的信息即为“re
k8s Cluster运行的,需要购买并开通k8s Cluster资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练
字段名称,例如:苹果是红色的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集
in/processed_for_input/llama2-13b/data/pretrain/ 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。 --output-prefix:处理后的数据集保存路径
[output.get_data_to_numpy() for output in outputs] # 后处理... 为了同时兼容onnx模型和mindir模型都能够在适配后的pipeline中运行,需要对于Model进行封装。MsliteModel各参数模型说明已给出,根据模型初始
永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其它地址。 使用GET和POST请求查看。 304 Not Modified 所请求的资源未修改,服务器返回此状态码时,不会返回任何资源。 305 Use Proxy
字段名称,例如:苹果是红色的。 code_type:预训练json文件编码 默认utf-8 当转换为share gpt格式时,prefix和 input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 步骤三:sharegpt格式数据生成为训练data数据集