检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型调优方法介绍 调优目标:提升模型精度和性能。 调优思路:模型调优总体可分为两方面,数据预处理和模型训练参数优化,优化思路是从最简单的情形出发,逐步迭代调整提升模型效果,通过实验发现和确认合适的数据量,以及最佳的模型结构和模型参数。 父主题: 盘古科学计算大模型调优实践
> 任务管理”页面单击“生成”,生成加工数据集。 生成后的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 管理标注后的文本类数据集 平台支持超级管理员、管理员、标注管理员对标注的数据集进行如下操作: 生成:在完成数据标注审核后,需超级管理员、管理员、标
> 任务管理”页面单击“生成”,生成加工数据集。 生成的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 管理标注后的视频类数据集 平台支持超级管理员、管理员、标注管理员对标注的数据集进行如下操作: 生成:在完成数据标注审核后,需超级管理员、管理员、标注
> 任务管理”页面单击“生成”,生成加工数据集。 生成的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 管理标注后的图片类数据集 平台支持超级管理员、管理员、标注管理员对标注的数据集进行如下操作: 生成:在完成数据标注审核后,需超级管理员、管理员、标注
配比图片类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts St
标准格式的示例如下,其中,context和target是键值对。 {"context": "你好,请介绍自己", "target": "我是盘古大模型"} 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 盘古格式的示例如下,其中,context和target是键值对。与标准格式不同,context是一个数组。
配比文本类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布文本类数据集。 创建文本类数据集配比任务 创建文本类数据集配比任务步骤如下: 登录ModelArts St
数据托管单元按订购数量和时长预付费,提供1个月到1年供客户选择。 模型训练资源支持两种计费方式,包周期按订购数量和时长预付费,提供1个月到1年供客户选择;按需订购按单元使用数量和时长后付费,时长精确到秒。 模型推理资源按推理单元订购数量和时长预付费,提供1个月到1年供客户选择。
通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API
优化训练数据的质量 在数据科学和机器学习领域,数据的质量和多样性对模型的效果至关重要。通过有效的数据预处理和数据优化方法,通过提升训练数据的质量可以显著提升训练所得模型的效果。以下是一些关键的数据优化方法及其具体过程: 数据加工 错误数据过滤 :在大规模数据集中,噪声和错误数据是不可避免的
提示词写作常用方法论 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部
F1_SCORE 精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权
的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供一些基本信息,大模型就能生成需求的文案,从而大大提高文案的质量和效率。 除了短视频风格的口播文案,营销文案还
NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。 针对预训练阶段,还
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
智能对话:通过先进的自然语言处理技术,人工智能助手能够理解和回应用户的语音或文本输入,实现流畅的人机交互。 个性化推荐:基于对用户行为习惯的学习,人工智能助手能提供高度定制化的内容和服务建议,如音乐推荐、新闻资讯等。 多任务处理能力:无论是设置提醒、查询天气、管理日程安排,还是控制智能家居设备,人工智能助手都能轻松应对。
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
登录“我的凭证 > 访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。