检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
关闭图(1.0.0) 功能介绍 关闭一个图。如果图创建好了,暂时不用可以先关闭,需要使用时再启用。 持久化版图不支持调用接口进行关闭图操作。 处于关闭状态的图不计算实例费用。 您最多可以停止7天,如果您在7天后未手动启动图实例,则图实例将自动启动。 调试 您可以在API Expl
Node2vec算法 概述 Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选 说明 类型 取值范围
点集最短路算法(Shortest Path of Vertex Sets)适用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系分析。 参数说明 表1 点集最短路算法(Shortest Path of Vertex Sets)参数说明 参数 是否必选 说明 类型 取值范围
进行扩副本操作后,不支持变更图规格操作。 如果要对图进行变更规格和扩副本两个操作,需要您先进行变更图规格操作,再进行扩副本操作。 持久化版图不支持调用接口进行扩副本操作。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
使用HyG算法分析图 GES服务为您提供了丰富的基础图算法、图分析算法和图指标算法,您可以使用图算法做关系分析等。 前提条件 前端创建持久化版图时,选择开启HyG计算引擎。 图1 HyG计算引擎 操作步骤 创建HyG图。 发送“POST /ges/v1.0/{project_id
边中介中心度算法(Edge-betweenness Centrality)以经过某条边的最短路径数目来刻画边重要性的指标。 适用场景 同betweenness类似,可用作关键关系的发掘;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Edge-betweenness Centrality算法参数说明
n算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数 参数
概述 实时推荐算法(Real-time Recommendation)是一种基于随机游走模型的实时推荐算法,能够推荐与输入节点相近程度高、关系或喜好相近的节点。 适用场景 实时推荐算法(Real-time Recommendation)可以基于历史购买和浏览数据进行相近商品推荐,
根据输入参数,执行三角计数算法。 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。 适用场景 共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。 参数说明 表1 共同邻居参数说明
Sets)用于发现两个点集之间的所有最短路径。 适用场景 点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析。 参数说明 表1 All Shortest Paths of Vertex Sets参数说明 参数 是否必选 说明 类型 取值范围
高性能 深度优化的分布式图形计算引擎,为您提供高并发、秒级多跳的实时查询能力。 查询分析一体 查询分析一体化,提供丰富的图分析算法,为关系分析、路径的规划、营销推荐等业务提供多样的分析能力。 简单易用 提供向导式、简单易用的可视化分析界面,所见即所得:支持Gremlin查询语
功能介绍 GES数据迁移功能提供了一键式从常见的关系型数据库(MySQL、Oracle、神通MPP)以及大数据组件(DWS、Hive)将数据导入到图实例的能力。用户只需要将原始数据预处理成GES所需要的点边表,就可以通过界面化操作将这些点边表导入到图实例,省去了之前繁琐的生成元数
编辑器页面 表1 区域说明 区域名称 说明 探索区 提供图相关工具来探索图(例如:路经拓展),具体功能介绍请参考图探索功能。 操作区 通过调用API的方式来添加自定义操作。具体功能介绍请参考添加自定义操作。 元数据区 可以对元数据进行操作(如添加、隐藏、导入或导出等)。具体功能介绍请参考Schema编辑。
关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。 参数说明 表1 k跳算法(k-hop)参数说明 参数 是否必选 说明 类型 取值范围 默认值 k 是 跳数
标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行
String 0~1,不包括0和1。 0.00001 max_iterations 否 最大迭代次数。 Integer API调用限制为1~2147483647,前端调用限制为1~2000。 1000 directed 否 是否考虑边的方向。 Boolean true或false。 true