检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务授权需要主账号或者admin用户组中的子账号进行操作。 授权委托需查看IAM委托列表,如果存在名为tics_admin_trust的委托和tics_role_trust的权限,需要先删除。 服务授权操作 进入TICS服务控制台,为保证正常创建TICS服务,需要先设置服务委托。
场景描述 本章节以“小微企业信用评分”场景为例。 背景信息 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。
Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds
单击页面右上角的“注册”按钮。 在注册页面,根据页面提示完成账号注册。 为了能够给您提供更好的云服务使用体验,建议您优先完成实名认证。实名认证分为个人账号和企业账号认证,不同账号类型认证的方法请参考以下链接。若您的账号已通过实名认证,可以略过此部分内容。 个人账号如何完成实名认证 企业账号如何完成实名认证
高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi + 秘密分享”的全过程流向,基本符合业界已公开的PSI算法流程和秘密分享流程。 图2 加密流程 图3 加密流程 父主题: 基于TICS实现端到端的企业积分查询作业
算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。
基于数据胶囊技术,将用户配置属性嵌入到数据加密策略中,只有匹配属性的用户才能打开文件,达到数据出域后仍然主权可控的目的。 进行数据交换的角色分为用数方和供数方,用数方通过发送申请传递数据使用需求;供数方确认使用需求后,创建合约发送到供数方进行签署,一旦合约生效,数据交换作业就可以执行。 父主题:
创建横向评估型作业 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和计算节点,参考部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 仅IEF计算节点支持创建横向评估型作业。
用数方可以在数据目录选取需要的数据集,创建数据申请并描述需求,发送至供数方审视需求。 支持的数据源类型:CSV或者二进制的本地文件、MySQL、Hive,其中MySQL和Hive的数据集配置可参照管理数据章节。 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。
碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题: 使用TICS多方安全计算进行联合样本分布统计
在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 图2 前往计算节点 选择界面左侧“数据管理>数据预处理”,单击已创建的数据预处理作业后的开发按钮,进入作业开发页面。该页面描述了字段的属性,如字段名称和分布类型。另外可以通过列表下方的“描述性统计”按键来统计字
group by industry 统计分析型的作业,可能被作业执行方通过增删某个碰撞的id,得到两次作业之间的差值,从而推算出实际taxpay和water_fee。 开启空间中的差分隐私开关保护敏感数据,符合差分隐私条件的统计作业,会自动应用差分隐私算法对计算结果进行加噪保护, 在一定误差范围内保证数据无法被恶意偷取。
在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 图2 前往计算节点 进入计算节点管理界面后,选择左侧“实例管理”。 实例管理页面上方展示了计算节点资源使用概况,分别为当前节点的多方安全计算和可信联邦学习的CPU资源当前使用量,并每分钟刷新一次。下方列表
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取用户Token接口,如果调用后返回状态码为“201”,则表示请求成功。 响应消息头 对应请求
安全沙箱机制 背景 当计算节点执行横向联邦训练型作业时,若执行脚本中包含恶意行为,包含但不限于非授权访问其他作业数据、篡改文件和配置、恶意消耗容器资源等场景时,会影响到数据提供方的计算环境安全以及其他学习作业的正常执行。 针对该问题,在边缘节点部署场景中,TICS通过构建Pyth
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于获取token接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
发起联邦预测 企业A单击“发起预测”按钮,选择己方和大数据厂商B的预测数据集,单击确定即可发起预测。 TICS服务会对两方的数据先进行样本对齐,并对双方共有的数据进行联邦预测,预测的结果会保存在企业A(作业发起方)的计算节点上。企业A可以通过obs服务或者登录到计算节点后台获取到对应路径的文件。
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计