检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
算法公共参数 请求参数 表1 请求Body参数说明 参数 是否必选 类型 说明 algorithmName 是 String 算法名字,详见具体的各个算法。 parameters 否 Object 算法参数。详情请参考各算法参数描述。 output 否 Object 结果输出参数。
算法公共参数 算法请求示例 { "algorithmName":"XXX", "parameters":{ ... } } 请求参数 表1 Body参数说明 参数 是否必选 类型 说明 algorithmName 是 String 算法名字。 取值范围(以下显示的均为算法实际调用时的名称
连通分量(connected_component) 功能介绍 根据输入参数,执行连通分量(Connected Component)算法。 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不考虑路径方向的为弱连通分量
关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1.0
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
自定义图分析算法编程示例 自定义SSSP算法 # 导入必要的包 from hyg.analytics.graph import load_base_graph from hyg.analytics.model import pregel_types, PregelModel #
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0
infomap算法(infomap) 功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges
最短路径(shortest_path) 功能介绍 根据输入参数,执行最短路径算法。 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
子图匹配算法(subgraph matching) 功能介绍 根据输入参数,执行subgraph matching算法。 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。
中介中心度算法(betweenness) 功能介绍 根据输入参数,执行中介中心度算法。 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
topicrank算法(topicrank) 功能介绍 根据输入参数,执行TopicRank算法。 TopicRank算法12345热线多维度话题排序算法之一,适用于政务12345热线投诉话题排序。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
louvain算法(louvain) 功能介绍 根据输入参数,执行Louvain算法。 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 URI POST /ges/v1.0/{project_id
边中介中心度(edge_betweenness) 功能介绍 根据输入参数,执行边中介中心度算法。 边中介中心度算法(edge_betweenness)以经过某条边的最短路径数目来刻画边重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project_id
最短路径(shortest_path) 表1 parameters参数说明 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID。 directed 否 Boolean 是否考虑边的方向,取值为true
边操作 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testQueryEdgeDetails 边详情查询 testBatchEdgesQuery 批量边查询 testBatchAddEdges
图操作 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testImportGraphPersistence 导入图 testClearGraphPersistence 清空图 父主题:
Job管理 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence waitJob 查询Job状态 testListJobs 查询Job列表 父主题: 持久化版样例
点操作 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testQueryVertexsDetails 点详情查询 testBatchVertexsQuery 批量点查询 testBatchAddVertexs