检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Server资源管理 查看Lite Server服务器详情 启动或停止Lite Server服务器 同步Lite Server服务器状态 切换Lite Server服务器操作系统 监控Lite Server资源 NPU日志收集上传 释放Lite Server资源
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b
码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和L
moondream2基于DevServer适配PyTorch NPU推理指导 方案概览 本文档从模型部署的环境配置、模型转换、模型推理等方面进行介绍moondream2模型在ModelArts DevServer上部署,支持NPU推理场景。 本方案目前仅适用于部分企业客户,完成本
获取yolov8 detection pt模型文件。下载地址:https://github.com/autogyro/yolo-V8 图1 下载yolov8 detection pt模型文件 pt模型转onnx模型。以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share
Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5
bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 { "prefix": "AAA"
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
"Brainstorming" } 如果用户希望将 MOSS 数据集的 Excel 格式转换为,json 格式。可使用代码中提供的 scripts/tools/ExcelToJson.py 工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm
"Brainstorming" } 如果用户希望将 MOSS 数据集的 Excel 格式转换为,json 格式。可使用代码中提供的 scripts/tools/ExcelToJson.py 工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm
"Brainstorming" } 如果用户希望将 MOSS 数据集的 Excel 格式转换为,json 格式。可使用代码中提供的 scripts/tools/ExcelToJson.py 工具,其转换的要求为: 本脚本可以处理的格式有:.xls .xlsx .csv .xlsb .xlsm
√ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ https://huggingface
√ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
√ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
√ √ https://huggingface.co/meta-llama/Llama-2-13b-chat-hf 6 llama2-70b √ √ √ √ √ https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface