检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据标注中,难例集如何定义?什么情况下会被识别为难例? 难例是指难以识别的样本,目前只有图像分类和检测支持难例。 父主题: Standard数据管理
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash
击“确定”,完成选中图片的标注操作。例如,您可以选择多张图片,按照花朵种类将图片标注为“tulips”。同样选择其他未标注分类图片,将其标注为“sunflowers”、“roses”等。标注完成后,图片将存储至“已标注”页签下。 图片标注支持多标签,即一张图片可添加多个标签。 标
ModelArts AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
使用AI Gallery的订阅算法实现花卉识别 本案例以“ResNet_v1_50”算法、花卉识别数据集为例,指导如何从AI Gallery下载数据集和订阅算法,然后使用算法创建训练模型,将所得的模型部署为在线服务。其他算法操作步骤类似,可参考“ResNet_v1_50”算法操作。
针对“图像分类”标注作业 在“待确认”页签中,查看标注难例的图片,其添加的标签是否准确。勾选标注不准确的图片,删除错误标签,然后在右侧“标签名”处添加准确标签。单击“确认”,勾选的图片及其标注情况,将呈现在“已标注”页签下。 选中的图片为标注错误图片,在右侧删除错误标签,然后在标签名处添加“狗”
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练时间较长,模型较大。对于TXT、图片类训练速度为16毫秒。 父主题: 模型训练
对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
觉判读。简单的说就是识别一张图中是否是某类/状态/场景,适合图中主体相对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或
为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 文件名规范,不能有中文,不能有+、空格、制表符。
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管
物体检测标注时,支持叠加框吗? 支持。 “物体检测”类型的数据集,在标注时,可在一张图片中添加多个标注框以及标签。需注意的是,标注框不能超过图片边缘。 父主题: Standard数据管理
启动智能标注时,必须存在未标注图片。 启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保您的图片数据中,不存在RGBA四通道图片。如果存在四通道图片,智能标注任务将运行失败,因此,请从数据集中删除四通道图片后,再启动智能标注。 启动智能标注作业 登录Mo
快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。
自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除
现的各种场景。 物体检测数据集中,如果标注框坐标超过图片,将无法识别该图片为已标注图片。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 预测分析对数据集的要求 训练数据: 训
加密桶的数据集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例