检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
BP。 原因分析 由于batch size过大,导致Dataloader进程退出。 处理方法 请调小batch size的数值。 父主题: 业务代码问题
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
构建Workflow多分支运行场景 Workflow多分支运行介绍 构建条件节点控制分支执行 配置节点参数控制分支执行 配置多分支节点数据 父主题: 开发Workflow命令参考
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
print(engine_dict) 使用案例 主要包含七种场景的用例: 使用订阅自AI Gallery的算法 使用算法管理中的算法 使用自定义算法(代码目录+启动文件+官方镜像) 使用自定义算法(代码目录+脚本命令+自定义镜像) 基于数据集版本发布节点构建作业类型节点 作业类型节点结合可视化能力 输入使用Data
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
校验csv文件,将多出字段的行删除。 在代码中忽略错误行,参考如下: import pandas as pd pd.read_csv(filePath,error_bad_lines=False) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。
发布Workflow到AI Gallery Workflow支持发布到AI Gallery,分享给其他用户使用,执行如下代码即可完成发布。 workflow.release_to_gallery() 发布完成后可前往gallery查看相应的资产信息,资产权限默认为private,可在资产的console页面自行修改。
Workflow通过支持预置场景的方式来实现部分运行的能力,在开发工作流时按照场景的不同对DAG进行划分,之后在运行态可选择任意场景单独运行。具体代码示例如下所示: workflow =wf.Workflow( name="image_cls", desc="this is
开发Workflow的核心概念介绍 Workflow Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 图1 Workflow介绍 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
code文件名冲突: 重命名当前工作目录下和创建kernel依赖的库文件冲突的文件名称。 常见容易冲突的文件:code.py、select.py。 父主题: 代码运行故障
管理AI Gallery镜像 编辑镜像介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在镜像详情页,选择“镜像介绍”页签,单击右侧“编辑介绍”。 编辑镜像基础设置和镜像描述。 表1 镜像介绍的参数说明 参数名称 说明 基础设置
SPEECH_SEGMENTATION DATASET_TABULAR VIDEO_ANNOTATION FREE_FORMAT Workflow数据集标注节点代码样例 主要包含三种场景的用例: 场景一:基于用户指定的数据集创建标注任务,并等待用户标注完成。 使用场景: 用户只创建了一个未标注完成的数
令安装。 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然后使用保存镜像功能。后续训练作业使用新保存的镜像,无需每次启动训练作业时再次下载代码包以及安装依赖包,可节约训练作业启动时间。
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
管理AI Gallery模型 编辑模型介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在模型详情页,选择“模型介绍”页签,单击右侧“编辑介绍”。 编辑模型基础设置和模型描述。 表1 模型介绍的参数说明 参数名称 说明 基础设置
在服务部署节点启动之后会等待用户设置相关配置信息,配置完成后直接单击“继续运行”即可。 如果想要跳过手动配置的步骤,直接自动运行部署节点,则按照需要在代码中提前配置ServiceInputConfig或ServiceConfig参数,如:service_config=wf.steps.Ser