检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安装Ascend插件 详情请参考官方文档:https://www.hiascend.com/document/detail/zh/mindx-dl/50rc1/dluserguide/clusterscheduling/dlug_scheduling_02_000001.html
横向比较提示词效果 将设置为候选的两个提示词横向比较,获取提示词的差异性和效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务名称,跳转工程任务下候选提示词页面。 图1
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 提示词工程
提示词设置为候选提示词。 图2 设为候选 每个工程任务下候选提示词上限9个,达到上限9个时需要删除其他候选提示词才能继续添加。 父主题: 横向比较提示词效果
选择模型与训练方法 NLP大模型 NLP大模型主要用于处理和理解人类语言,能够实现对话问答、文案生成和阅读理解等任务,并具备逻辑推理、代码生成以及插件调用等高阶能力。 NLP大模型提供了基模型和功能模型两种类型: 基模型:已经在大量数据上进行了预训练,学习并理解了各种复杂特征和模式。这些
add_docs(bulk_list) 通过vectorStoreConfig判断使用CSS的插件模式和非插件模式。如果配置了embedding模型,则使用非插件模式,否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
.build()); 通过vectorStoreConfig判断使用CSS的插件模式和非插件模式,如果配置了embedding模型,则使用非插件模式;否则使用插件模式。注意,在非插件模式下,vectorFields有且只有1个。 父主题: Memory(记忆)
集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题:
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将提示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
指标的缺陷 BLEU指标只考虑n-gram词的重叠度,不考虑句子的结构和语义。 模型优化建议 如何基于指标的分值对训练任务进行调整:一般横向比较两个模型时,可以参考该指标。然而,指标没有一个明确的阈值来指示何时模型效果差。因此,单靠该指标无法直接决定任务的调整策略。 如果指标低
启用盘古大模型搜索增强能力 大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,
Cache Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,这样当需要访问这些数据时,就不用再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 对LLM使用缓存: LLM llm = LLMs.of(LLMs.PANGU, llmConfig);
Cache Cache缓存是一种临时存储数据的方法,它可以把常用的数据保存在内存或者其他设备中,当需要访问这些数据时,无需再去原始的数据源查找,而是直接从缓存中获取,从而节省时间和资源。 Cache缓存有以下几种操作: 初始化:指定缓存使用哪种存储方式,例如,使用内存型缓存可以设置为memory_cache
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听。 AgentListener的定义如下: public interface AgentListener { /** * Session启动时调用
统计模型调用量 模型调用成功后,有两种方式可以查看模型的调用量。 通过“服务管理”功能查看调用量:查看具体某个模型的调用总量、调用成功量、调用失败量,且可按时间进行筛选。 通过“运营面板”功能查看调用量:查看全部模型访问总数、模型回复时的响应时长、兜底回复比例以及输入/输出token信息。
Agent助手 应用介绍 通过模型对复杂任务的自动拆解与外部工具调用执行能力,通过与用户多轮对话,实现会议室预订场景。 环境准备 Java 1.8。 参考安装章节,完成基础环境准备。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam、pangu配置项。信息收集请参考准备工作。
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理