检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
卡。 步骤一:打通VPC 通过打通VPC,可以方便用户跨VPC使用资源,提升资源利用率。 在“网络”页签,单击网络列表中某个网络操作列的“打通VPC”。 图1 打通VPC 在打通VPC弹框中,打开“打通VPC”开关,在下拉框中选择可用的VPC和子网。 需要打通的对端网络不能和当前网段重叠。
完成标注。 在新版自动学习页面,单击数据标注节点的“继续运行”按钮,然后等待工作流按顺序进入训练节点即可。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“图像分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格、不同厂商的摄像机上,这是一项非常耗时、费力的巨大
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite DevServer上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
推理场景介绍 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
本案例需要创建一个Notebook,以便能够通过它访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。
华为云技术支持配置完成后,会给您提供对应的OBS桶目录“obs_dir”,该目录用于后续配置的脚本中。 图1 租户名ID和IAM用户名ID 准备收集上传脚本。 修改以下脚本中NpuLogCollection的参数,将ak、sk、obs_dir替换为前面步骤中获取到的值,然后把该脚本上传到要收集NPU日志的节点上。 import
线上环境调试代码(仅适用于非分布式代码) 在开发环境(notebook)申请相同规格的开发环境实例。 在notebook调试用户代码,并找出问题的代码段。 通过关键代码段 + 退出码尝试去搜索引擎寻找解决办法。, 通过训练日志排查问题 通过日志判断出问题的代码范围。 修改代码,在问题代码段添加打印,输出更详细的日志信息。
aregpt格式的数据集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述。 关于数据集文件的格式及配置,请参考data/README_zh.md的内容。可以使用HuggingFa
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
语音分割:对语音进行分段标注。 文本 文本分类:对文本的内容按照标签进行分类处理。 命名实体:针对文本中的实体片段进行标注,如“时间”、“地点”等。 文本三元组:针对文本中的实体片段和实体之间的关系进行标注。 视频 视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 智能标注 除了人工标注外,
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
如果没有挂载任何外部存储,此时可用存储空间根据dockerBaseSize的配置来决定,可访问的存储空间比较小,因此建议通过挂载外部存储空间解决存储空间受限问题。 容器中挂载存储有多种方式,不同的场景下推荐的存储方式不一样,详情如表1所示。容器存储的基础知识了解请参见存储基础知识,有助您理解本章节内容。您可查
job_step输出的metric文件格式要求可参考创建Workflow训练作业节点部分,并且在Condition中只支持使用type为float类型的指标数据作为输入。 此案例中metrics.json的内容示例如下: [ { "key": "loss"
署成为在线服务向外提供推理服务,或者运行到自己的运行环境中。 MindSpore Lite 华为自研的AI推理引擎,后端对于昇腾有充分的适配,模型转换后可以在昇腾上获得更好的性能,配合丰富的适配工具链,降低迁移成本,该工具在推理迁移工作的预置镜像已安装,可在镜像中直接使用(见环境准备)。关于MindSpore
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
nd网卡的问题,可以咨询相关运维人员以确认宿主机的实际infiniband驱动版本。 图1 下载驱动 参考如下Dockerfile中,以在容器镜像中安装infiniband驱动。 USER root # copy MLNX_OFED_LINUX-4.3-1.0.1.0-ubuntu16
注意: 存储到OBS中的数据需在OBS控制台进行手动删除。如果未删除,则会按照OBS的计费规则进行持续计费。 按需计费 包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费 事件通知(不开启则不计费) 订阅消息使用消息通知服务,在事件列表中选择特定事件,在事件发生时发送消息通知。
tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。 如果文件较大,可以保存成多个“.tar”包,在入口脚本中调用多进程进行并行解压数据。不建议把散文件保存到OBS上,这样会导致下载数据很慢。 在训练作业中,使用如下代码进行“.tar”包解压: import moxing as mox import
训练精度对齐。对齐前2000步的loss,观察loss在极小误差范围内。 GPU环境下,使用Github中的官方代码跑训练任务。Github中的官方代码下载路径:https://github.com/hpcaitech/Open-Sora/tree/v1.0.0 在NPU代码 configs/ope