检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
型训练之前需对没有标签的音频添加标签。通过ModelArts您可对音频进行一键式批量添加标签,快速完成对音频的标注操作,也可以对已标注音频修改或删除标签进行重新标注。音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。 声音分类是对声音进行分类。语音内容是对语音内容
更新AI应用版本时,边缘服务预测功能不可用? 针对某一部署的边缘服务,如果在更新AI应用版本时,即修改边缘服务,更新其使用的AI应用版本,导致此边缘服务的预测功能暂不可用。 针对此场景,由于更新了AI应用版本,边缘服务将重新部署,处于部署中的边缘服务,则无法使用预测功能。即更新A
请联系技术支持。 正常 服务更新中。 Updating service. - 正常 服务启动中。 Starting service. - 正常 服务停止中。 Stopping service. - 正常 服务已停止。 Service stopped. - 正常 自动停止开关已关闭。 Auto-stop
头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 若您的原始表格中没有表头,需要关闭“导入是否包含表头”开关,从OBS选择数据后,Schema信息的列名默认为表格中的第一行数据,请更改Schema信息中的“列名”为attr_1、attr_2、……
添加标签 标注页面和标签都修改完成后,单击“应用所有修改”,在弹出的对话框单击“确定”,自动返回至标注概览页,同时会覆盖原始的标注数据。 图14 应用所有修改 如果您对修改后的数据不满意,也可以单击“放弃修改”选择放弃本次修改,保持原有的标注数据。 图15 放弃修改 表5 快速复核界面的常用按钮
配置需要的NPU卡。 export ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 0,1,2,3修改为需要使用的卡,如需使用全部8张卡,修改为0,1,2,3,4,5,6,7。 配置PYTHONPATH。 export PYTHONPATH=$PYTHONPATH:${vllm_path}
py,具体操作命令如下,可以根据参数说明修改参数。 python eval_test.py \ --max_workers=1 \ --service_name=llama2-13b-chat-test \ --eval_dataset=ceval \ --service_url=htt
ModelArts数据管理支持哪些格式? 不同类型的数据集支持不同的功能。 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本 自动分组 数据特征 文件型 图像分类 支持 支持 支持 支持 支持 支持 支持 支持 物体检测 支持 支持 支持 支持 支持
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}
执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ host=$host \ service_port=${service_port} \ max_out_len=${max_out_len}
charging_mode String 计费模式。 COMMON:同时支持包周期和按需 POST_PAID:按需模式 PRE_PAID:包周期 cloud_server CloudServer object 云服务信息。 endpoints_response Array of Endpoints
charging_mode String 计费模式。 COMMON:同时支持包周期和按需 POST_PAID:按需模式 PRE_PAID:包周期 cloud_server CloudServer object 云服务信息。 endpoints_response Array of Endpoints
集支持的所有标签信息。 修改标注 当数据完成标注后,您还可以进入已标注页签,对已标注的数据进行修改。 基于图片修改 在标注作业详情页面,单击“已标注”页签,然后在图片列表中选中待修改的图片(选择一个或多个)。在右侧标签信息区域中对图片信息进行修改。 修改标签:在“选中文件标签”区
发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ... ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict
ServiceInput(name="si_service_data", data=service) # 已部署的服务在运行时配置;data也可使用wf.data.ServiceData(service_id="fake_service")表示 ], # ServiceStep的输入列表
Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1
Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1
Face权重时,对应的存放地址。请根据实际规划修改。 对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为8机64卡训练。
下。如果用户需要修改,可添加并自定义该变量。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文件,具体请参见训练tokenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动
Face权重时,对应的存放地址。请根据实际规划修改。 对于ChatGLMv3-6B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 步骤3 启动训练脚本 请根据步骤2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为4机32卡训练。