检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_3h-20241030 用于天气基础要素预测,时间分辨率为3小时。 支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_6h-20241030
模型超参数,实现智能化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击
看训练指标、训练任务详情和训练日志。 表1 训练状态说明 训练状态 训练状态含义 已发布 模型已经训练完成并进行发布,用户可以使用模型进行部署、推理操作。 训练完成 模型训练已经成功完成。 训练中 模型正在训练中,训练过程尚未结束。 训练失败 模型训练过程中出现错误,需查看日志定位训练失败原因。
使用“能力调测”调用NLP大模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP大模型部署任务。 NLP大模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP大模型 表1 NLP大模型能力调测参数说明
提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
已完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发 > 模型部署”,选择所需调用的N
数据集的质量。平台预设了多种数据类型的基础评估标准,用户可以直接使用这些标准,也可以根据具体的业务需求创建自定义的评估标准。通过这种灵活的配置方式,用户能够根据不同的应用场景和目标,精确地评估和优化数据质量,确保数据在进入模型训练阶段之前达到高标准,进而提升模型的性能和效果。 数据集评估标准介绍
在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
调测特性,基于Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S-Ocean_Swell_24h-20241030 此版本在Studio上首次发布,用于海浪预测,支持在线推理、能力调测特性,基于Snt9B3部署,可支持1个推理单元部署推理。 Pangu-AI4S
此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支持预置模型版本,不支持SFT后模型版本做128K序列长度推理部署。 Pangu-NLP-N2-Base-20241030 - 此版本是2024年10月发布的百亿级
全生命周期的大模型工具链。 ModelArts Studio大模型开发平台为开发者提供了一种简单、高效的开发和部署大模型的方式。平台提供了包括数据处理、模型训练、模型部署、Agent开发等功能,以帮助开发者充分利用盘古大模型的功能。企业可以根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。
语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型(NLP大模型、科学计算大模型)在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 盘古仅提供技术能力,不对最终生成的内容负责,建议用户在使用服务的过程中,对模型生成的内容进行适当的审核和过滤,以保证内容的安全性。
方便统一管理与操作。用户可以查看模型的所有历史版本及操作记录,从而追踪模型的演变过程。同时,平台支持一系列便捷操作,包括模型训练、压缩和部署,帮助用户简化模型开发及应用流程。这些功能有助于用户高效管理模型生命周期,提高资产管理效率。 管理模型资产 登录ModelArts Studio大模型开发平台,进入所需空间。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
开发盘古科学计算大模型 使用数据工程构建科学计算大模型数据集 训练科学计算大模型 部署科学计算大模型 调用科学计算大模型
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场