检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中,访问外网速度不稳定怎么办? 为了方便AI开发者在使用Notebook时访问外部资源,ModelArts提供了一个免费的共享网络代理服务。借助这个代理,开发者可以更加便捷地下载所需的各类资源,助力开发工作的顺利进行。 由于该网络代理免费且共
在ModelArts的Notebook中安装远端插件时不稳定要怎么办? 方法一:离线包安装方式(推荐) 到VS Code插件官网vscode_marketplace搜索待安装的Python插件,Python插件路径。 单击进入Python插件的Version History页签后,下载该插件的离线安装包,如图所示。
在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办? 如果已有launch.json文件,请直接看步骤三。 步骤一:打开launch.json文件 方法一:单击左侧菜单栏的Run(Ctrl+Shift+D)按钮,再单击create a launch
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明
ModelArts训练时使用os.system('cd xxx')无法进入文件夹怎么办? 当在训练作业的启动脚本中使用os.system('cd xxx')无法进入相应的文件夹时,建议使用如下方法: import os os.chdir('/home/work/user-job-dir/xxx')
在ModelArts的Notebook中实例重新启动后要怎么连接? 可以在本地的ssh config文件中对这个Notebook配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null”,如下参考所示: Host roma-local-cpu
原因为Github已取消密码授权方式,此时在git clone私有仓库和git push文件时需要在授权方式框中输入token。 解决方案 使用token替换原先的密码授权方式,在git clone私有仓库和git push文件时,需要在授权方式框中输入token(见下图);具体获取token方
conda env list 执行如下命令分别切换到对应环境查看是否有ipykernel包。 conda activate base # base替换为实际使用的python环境 pip show ipykernel 对应conda环境没有ipykernel,直接在Notebook中添加自定义IPython
ut_storage,'obs://dyyolov8/yolov5_test/yolov5-7.0/datasets'), mox这个函数怎么定义以变量的形式填写OBS路径? 解决方案 变量定义参考如下示例: input_storage = './test.py' import moxing
的代码等价替换为对应的mindir模型推理接口。以vae_encoder模型为例,在pipeline代码中查找vae_encoder推理调用的地方,然后修改为对应的MindSpore Lite版本的推理接口模型。 使用MindSpore Lite Runtime接口替换onnx Runtime接口。
使用SDK调测多机分布式训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改7和11中的 framework_type参数值即可,例如:MindSpore框架,此处framew
in certificate chain 图1 报错SSL certificate problem 可采取忽略SSL证书验证:使用以下命令来克隆仓库,它将忽略SSL证书验证。 git clone -c http.sslVerify=false https://github.com/Rudrabha/Wav2Lip
Controlnet训练 使用文本提示词可以生成一副精美的画作,然而无论再怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
行Diffusers模块的适配与替换,然后针对替换上去的Diffusers,对其pipeline进行昇腾迁移适配,进而替代原有WebUI的功能。针对很多参数以及三方加速库(如xformers)的适配,当前没有特别好的处理方案。 LoRA适配流是怎么样的? 因为现在pytorch-
登录SWR后,使用docker tag命令给上传镜像打标签。下面命令中的组织名称deep-learning,请替换为Step1中实际创建的组织名称,以下所有命令中的deep-learning都需要替换。 sudo docker tag tf-1.13.2:latest swr.example.c
在AI开发过程中,服务升级包括对已部署的模型服务进行优化,以提高性能、增加功能、修复缺陷,并适应新的业务需求。更新模型版本作为服务升级的一部分,涉及用新训练的模型版本替换原来的模型,以提高预测的准确性和模型的环境适应性。 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts Studio”进入ModelArts
如果实例的架构是x86_64的,通过下面的链接,手动修改Commit码(Commit码替换时去掉尖括号),使用浏览器下载vscode-server-linux-x64.tar.gz文件。 https://update.code.visualstudio.com/commit:<Co
_name}:${image_version}请替换为您所要上传的实际镜像的名称和版本名称。 [镜像仓库地址]:可在SWR控制台上查询,即1.c中登录指令末尾的域名。 [组织名称]:/${organization_name}请替换为您创建的组织。 [镜像名称2:版本名称2]:${
v1的DLS_TASK_NUMBER环境变量,可以使用v2的MA_NUM_HOSTS环境变量替换,即选择的训练节点数。 v1的DLS_TASK_INDEX环境变量,当前可以使用v2的VC_TASK_INDEX环境变量替换,下一步使用MA_TASK_INDEX替换,建议使用demo script中的方式获取,以保证兼容性。