检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址
进行驱动升级,请提交工单联系华为工程师开启节点绑定。 ModelArts与OBS交互 ModelArts不支持从加密的OBS桶中读取数据,创建OBS桶时,请勿开启桶加密。 ModelArts不支持跨区域访问OBS桶,请确保使用的OBS与ModelArts在同一区域。
default="True", description="是否进行数据清洗, 数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.Al
SDK和MoXing的区别是什么? ModelArts的API或SDK支持模型下载到本地吗? ModelArts通过OBS的API访问OBS中的文件,属于内网还是公网访问? 调用ModelArts API接口创建训练作业和部署服务时,如何填写资源池的参数?
查询训练作业版本详情 删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)
响应Body参数 参数 参数类型 描述 yaml_templates Array of YamlTemplate objects 所有yaml文件的目录和文件名信息。 表3 YamlTemplate 参数 参数类型 描述 algorithm_type_en String AutoSearch算法类型,英文描述。
Notebook中已安装对应库,仍报错import numba ModuleNotFoundError: No module named 'numba' JupyterLab中文件保存失败,如何解决? 用户结束kernelgateway进程后报错Server Connection Error,如何恢复? 父主题: 开发环境
的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠性。而事实上,不能一次性将所有数据都采集全,因此,在数据标注阶段你可能会发现还缺少某一部分数据源,反复调整优化。
不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运行总览页面,单击数据标注节点的“实例详情”进入数据标注页面,完成数据标注。 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。
在新版自动学习页面,单击项目名称进入运行总览,单击“数据标注”节点的“实例详情”进入“数据标注”页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如
享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址
oAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
regpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
awq --clone PyTorch-2.1.0 conda activate awq 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 python examples/quantize.py --model-path
ModelArts中的作业为什么一直处于等待中? ModelArts控制台为什么能看到创建失败被删除的专属资源池? ModelArts训练专属资源池如何与SFS弹性文件系统配置对等链接?
autoremove --purge *nccl* 删除原nccl-test的编译后文件。 由于nccl-test make编译也是基于当前cuda12.0版本的。 当cuda版本更换后,需要重新编译, 因此删除它。默认该文件在/root/nccl-tests直接删除即可。 从内核中卸载nvidia相关的所有进程。
regpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,
匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 ECS中DockerFIle构建新镜像:在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会尝试自动下