检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题: Standard推理部署
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调
原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。
table.json文件和使用实例个数的local_ranktable.json文件;如果指定了--api-server,还会生成一个local_ranktable_host.json文件用于确定服务入口实例。 ./save_dir生成ranktable文件如下(假设本地主机ip为10
f/grafana-9.1.6/conf/defaults.ini”文件。 修改[server]中的“root_url”和“serve_from_sub_path”字段。 图1 修改defaults.ini文件 其中: root_url的组成为:https:{jupyterlab
去掉尖括号),使用浏览器下载vscode-server-linux-arm64.tar.gz文件。下载完成后,将下载的vscode-server-linux-arm64.tar.gz文件重命名为“vscode-server-linux-x64.tar.gz”。 https://update
合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的“继续运行”,然后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无
存储相关 在ModelArts中如何查看OBS目录下的所有文件?
elArts,需要停止/删除ModelArts中运行的服务;删除在OBS中存储的数据;删除在EVS中存储的数据。 清理存储数据 由于ModelArts的数据存储在OBS中,请前往OBS服务删除对应数据和目录,停止计费。 清理资源 请检查在ModelArts所创建运行中的作业,并停止或删除相关作业,即可停止计费。
当对自定义镜像的驱动进行升级时,请确定底层驱动是否兼容。当前支持哪种驱动版本,请从基础镜像中获取。 文件权限不足 该问题可能为自定义镜像的用户与作业容器的用户不同导致的。请修改dockerfile文件: RUN if id -u ma-user > /dev/null 2>&1 ; \ then
r run启动,无法正常运行; 用户自行安装了Jupyterlab服务导致冲突的,需要用户本地使用Jupyterlab命令罗列出相关的静态文件路径,删除并且卸载镜像中的Jupyterlab服务; 用户自己业务占用了开发环境官方的8888、8889端口的,需要用户修改自己的进程端口号;
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MR
├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本
├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本
├── benchmark_serving.py # 评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本
Roce网卡健康状态 NPU网卡不可用 NPU:Roce网卡配置文件/etc/hccn.conf不存在 HccnConfNotExisted 重要 Roce网卡配置文件"/etc/hccn.conf"不存在 请检查/etc/hccn.conf网卡配置文件 Roce网卡不可用 GPU:GPU基本组件异常
匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行 install.sh 文件,来安装依赖以及下载完整代码。 ECS中构建新镜像(二选一):在ECS中,通过运行Dockerfile文件会在基础镜像上创建新的镜像。新镜像命名可自定义。Dockerfile会下载Megatr
训练脚本说明 训练脚本存放目录说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
查看YAML”查看节点配置信息。 查看节点的yaml文件里“cce.kubectl.kubernetes.io/ascend-rank-table”字段是否有值。 如图所示,表示有值,节点已开启topo文件和ranktable文件的下发。否则,联系技术支持处理。 图5 查看节点的yaml文件 父主题: Lite
创建模型规范参考 模型包结构介绍 模型配置文件编写说明 模型推理代码编写说明 自定义引擎创建模型规范 自定义脚本代码示例 父主题: 使用ModelArts Standard部署模型并推理预测