检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ipynb文件。编写以下代码,并运行Untitled.ipynb文件(用于将OBS中的数据导入至云硬盘EVS)。 import moxing as mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "ob
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下:
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下:
ENV_AG_MODEL_DIR 模型存放路径,AI Gallery的模型仓库地址,包含模型仓库的所有文件。 “/home/ma-user/.cache/gallery/model/ur12345--gpt2” ENV_AG_DATASET_DIR 数据集存放路径,AI Gallery的数
义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH /home/ma-user/ws/llm_train/AscendSpeed/tokenizers/llama2-13b tokenizer的存放路径,与HF权重存放在一个文件夹下。请根据实际规划修改。
s_LossCompare.jsonl 原始数据集的存放路径。 TOKENIZER_PATH /home/ma-user/work/model/llama-2-13b-chat-hf tokenizer的存放路径,与HF权重存放在一个文件夹下。请根据实际规划修改。 PROCESSED_DATA_PREFIX
l文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录 benchmark工具脚本存放在代码包AscendCloud-LLM-xxx.zip的LLM/LLaMAFactory/benchmark目录下,包含训练性能测试和训练精度测试脚本。
- mnist-data # OBS文件夹,用于存放训练数据集,可以自定义名称,此处举例为mnist-data - mnist-code # OBS文件夹,用于存放训练脚本train.py,可以自定义名称,此处举例为mnist-code
s_LossCompare.jsonl 原始数据集的存放路径。 TOKENIZER_PATH /home/ma-user/work/model/llama-2-13b-chat-hf tokenizer的存放路径,与HF权重存放在一个文件夹下。请根据实际规划修改。 PROCESSED_DATA_PREFIX
\ /bin/bash --device=/dev/davinciX 挂载NPU设备,示例中挂载了1张卡 work_dir:工作目录,目录下存放着训练所需代码、数据等文件 container_work_dir: 容器工作目录,一般同work_dir container_name:自定义容器名
上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/model目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具 方式二:通过OBS
上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/model目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具 方式二:通过OBS
s_LossCompare.jsonl 原始数据集的存放路径。 TOKENIZER_PATH /home/ma-user/work/model/llama-2-13b-chat-hf tokenizer的存放路径,与HF权重存放在一个文件夹下。请根据实际规划修改。 PROCESSED_DATA_PREFIX
NMS方法降低目标框堆叠度 ModelArts标注数据丢失,看不到标注过的图片的标签 如何将某些图片划分到验证集或者训练集? 物体检测标注时除了位置、物体名字,是否可以设置其他标签,比如是否遮挡、亮度等? ModelArts数据管理支持哪些格式? 旧版数据集中的数据是否会被清理? 数据集版本管理找不到新建的版本
中标签颜色,单击“添加”完成1个物体的标注。如果已存在标签,从下拉列表中选择已有的标签,然后单击“添加”完成标注。逐步此画面中所有物体所在位置,一帧对应的画面可添加多个标签。 支持的标注框与“物体检测”类型一致,详细描述请参见物体检测章节的表2。 图2 视频标注 上一帧对应的画面
决定如何使用该对象。 inference_loc String 当此Manifest文件由推理服务生成时会有该字段,表示推理输出的结果文件位置。 id String 样本ID。 source_type String source的类型,比如csv。 source_property
----0500.jpg 输出说明 输出目录的结构如下所示。其中“model”文件夹存放用于推理的“frozen pb”模型,“samples”文件夹存放训练过程中输出图像,“Data”文件夹存放训练模型生成的图像。 train_url----model----CYcleGan_epoch_10
动态分辨率可以用于设置输入图片的动态分辨率参数。适用于执行推理时,每次处理图片宽和高不固定的场景,该参数需要与input_shape配合使用,input_shape中-1的位置为动态分辨率所在的维度。使用方法可参考Ascend配置文件说明。 父主题: 模型适配
hard_example_path String 难例的存放路径。 hard_select_tasks Array of HardSelectTask objects 难例筛选作业列表。 manifest_path String manifest文件的存放路径。 model_id String 模型ID。
已标注:同时导入标注对象和标注内容,当前“自由格式”的数据集不支持导入标注内容。 为了确保能够正确读取标注内容,要求用户严格按照规范存放数据: 导入方式选择目录时,需要用户选择“标注格式”,并按照标注格式的要求存放数据。 导入方式选择manifest时,需要满足manifest文件的规范,详细规范请参见标注格式章节。