检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
DLI Flink作业专为实时数据流处理设计,适用于低时延、需要快速响应的场景,支持与多种云服务跨源连通,形成丰富的流生态圈。适用于实时监控、在线分析等场景。 · Flink OpenSource作业:DLI提供了标准的连接器(connectors)和丰富的API,便于快速与其他数据系统的集成。
array(<value>,<value>[, ...]) 具体使用示例详见:ARRAY示例。 MAP 一组无序的键/值对,使用给定的Key和Value对生成MAP。键的类型必须是原生数据类型,值的类型可以是原生数据类型或复杂数据类型。同一个MAP键的类型必须相同,值的类型也必须相同。 map(K
array(<value>,<value>[, ...]) 具体使用示例详见:ARRAY示例。 MAP 一组无序的键/值对,使用给定的Key和Value对生成MAP。键的类型必须是原生数据类型,值的类型可以是原生数据类型或复杂数据类型。同一个MAP键的类型必须相同,值的类型也必须相同。 map(K
项目中资源类型的所有资源标签集合。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v3/{project_id}/{resource_type}/tags
开源Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka服务
connector.key-column 否 table存储模式下可配置,将该字段值作为redis中的ext-key,未配置时,ext-key为生成的uuid connector.write-schema 否 table存储模式下可配置,是否将当前schema写入到redis,默认为false
connector.key-column 否 table存储模式下可配置,将该字段值作为redis中的ext-key,未配置时,ext-key为生成的uuid connector.write-schema 否 table存储模式下可配置,是否将当前schema写入到redis,默认为false
开源Kafka输出流 功能描述 DLI将Flink作业的输出数据输出到Kafka中。 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。 前提条件 Kafka服务
OVER 功能描述 窗口函数与OVER语句一起使用。OVER语句用于对数据进行分组,并对组内元素进行排序。窗口函数用于给组内的值生成序号。 语法格式 1 2 3 4 5 SELECT window_func(args) OVER ([PARTITION BY col_name
OVER子句 功能描述 窗口函数与OVER语句一起使用。OVER语句用于对数据进行分组,并对组内元素进行排序。窗口函数用于给组内的值生成序号。 语法格式 1 2 3 4 5 SELECT window_func(args) OVER ([PARTITION BY col_name
format("opentsdb").options(map.toMap).load().show() 返回结果: 提交Spark作业 将写好的代码生成jar包,上传至DLI中。 控制台操作请参考《数据湖探索用户指南》。API操作请参考《数据湖探索API参考》>《上传资源包》。 在Spar
SQL作业支持SQL查询功能:可为用户提供标准的SQL语句。具体内容请参考《数据湖探索SQL语法参考》。 Flink作业支持Flink SQL在线分析功能:支持Window、Join等聚合函数、地理函数、CEP函数等,用SQL表达业务逻辑,简便快捷实现业务。具体内容请参考《数据湖探索SQL语法参考》。
'json' 'sink.properties.read_json_by_line' = 'true' 示例 该示例是从Datagen数据源中生成数据,并将结果写入到Doris结果表中。 参考增强型跨源连接,在DLI上根据Doris所在的虚拟私有云和子网分别创建相应的增强型跨源连接,
VARBINARY BLOB BYTEA BYTES - ARRAY ARRAY 示例 从Kafka源表中读取数据,将JDBC表作为维表,并将二者生成的表信息写入Kafka结果表中,其具体步骤如下: 参考增强型跨源连接,在DLI上根据MySQL和Kafka所在的虚拟私有云和子网分别创建相
VARBINARY BLOB BYTEA BYTES - ARRAY ARRAY 示例 从Kafka源表中读取数据,将JDBC表作为维表,并将二者生成的表信息写入Kafka结果表中,其具体步骤如下: 参考增强型跨源连接,在DLI上根据MySQL和Kafka所在的虚拟私有云和子网分别创建相
创建OBS表。 该命令不会删除当前版本数据。 示例 删除dliTable表在2021-09-25 23:59:59之前生成的多版本数据(多版本生成时会自带一个生成时间时的时间戳)。 clear history for table dliTable older_than '2021-09-25
删除时tags结构体不能缺失,key不能为空,或者空字符串。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v3/{project_id}/{resource_type}/{re
创建OBS表。 该命令不会删除当前版本数据。 示例 删除dliTable表在2021-09-25 23:59:59之前生成的多版本数据(多版本生成时会自带一个生成时间时的时间戳)。 clear history for table dliTable older_than '2021-09-25
sparkSession.sql("select * from testhbase").show(); 提交Spark作业 将写好的代码文件生成jar包,上传至DLI中。 控制台操作请参考《数据湖探索用户指南》。API操作请参考《数据湖探索API参考》>《上传资源包》。 如果MRS
请求发送是否成功。“true”表示请求发送成功。 message 是 String 系统提示信息,执行成功时,信息可能为空。 job_id 否 String 提交请求成功时,生成并提交一个新的作业,返回作业ID。用户可以使用作业ID来查询作业状态和获取作业结果。 status 是 String 作业状态。状态可能为