检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用。 开发者可以通过浏览器入口以Notebook方式访问,也可以通过VSCode远程开发的模式直接接入到云上环境中完成迁移开发与调测,最终生成适配昇腾的推理应用。 当前支持以下两种迁移环境搭建方式: ModelArts Standard:在Notebook中,使用预置镜像进行。 ModelArts
传至OBS桶。 上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下
MiniCPM-V2.0推理及LoRA微调基于DevServer适配PyTorch NPU指导(6.3.910) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对MiniCPM-V2.0进行LoRA微调及推理。本文档中提供的训练脚本,是基
log_url=log_obs_path ) # job_name是可选参数,可不填随机生成工作名 job_instance = estimator.fit(inputs=[input_data],
Workflow运行流程 项目类型介绍 图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“
在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 OBS上传文件的规范: 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。 如需要提前上传待标注的文件,请创建一个空文件夹,然后将文本文件保存在该文件夹下,文本文件的目录结构如:“/bucketName/data/text
#推荐commit pip install -e . 开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
配套CANN8.0.RC1镜像 无 算子,包名:AscendCloud-OPP Scatter、Gather算子性能提升,满足MoE场景 昇腾随机数生成算子与GPU保持一致 支持GroupNorm+transpose+BMM融合算子 FFN推理算子支持geglu激活函数 支持配套pybind推理的10+算子(matmul
create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch.tar.gz conda pack -n pytorch -o pytorch.tar.gz 将打包好的压缩包传到本地: #
搜索指标的名称。需要与您在代码中打印的搜索指标参数保持一致。 优化方向 可选“最大化”或者“最小化”。 指标正则 填入正则表达式。您可以单击智能生成功能自动获取正则表达式。 设置自动化搜索参数 从已设置的“超参”中选择可用于搜索优化的超参。优化的超参仅支持float类型,选中自动化搜索参数后,需设置取值范围。
}/{eval_dataset}-{timestamp} 的目录结果保存到对应的测试工程。执行多少次,则会在{service_name}下生成多少次结果。 单独的评测结果如下: {eval_dataset}-{timestamp} # 例如: mmlu-20240205093257
pt模型转onnx模型。以转换yolov8n.pt为例,执行如下命令,执行完会在当前目录生成yolov8n.onnx文件。 python pt2onnx.py --pt yolov8n.pt onnx模型转mindir格式,执行如下命令,转换完成后会生成yolov8n.mindir文件。 converter_lite
“启动方式” 选择“预置框架”。 选择算法使用的预置框架引擎和引擎版本。 “代码目录” 算法代码存储的OBS路径。训练代码、依赖安装包或者预生成模型等训练所需文件上传至该代码目录下。 请注意不要将训练数据放在代码目录路径下。训练数据比较大,训练代码目录在训练作业启动后会下载至后台,可能会有下载失败的风险。
是 训练源代码的OBS路径。 --data-url String 是 训练数据的OBS路径。 --log-url String 是 存放训练生成日志的OBS路径。 --train-instance-count String 是 训练作业实例数,默认是1,表示单节点。 --boot-file
上传OBS的文件规范: 文件名规范,不能有中文,不能有+、空格、制表符。 如不需要提前上传训练数据,请创建一个空文件夹用于存放工程后期生成的文件。如:“/bucketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下
return F.log_softmax(x) def Mnist(model_path, **kwargs): # 生成网络 model = Net() # 加载模型 if torch.cuda.is_available():
配置训练作业基本信息 在创建训练作业页面填写训练作业基本信息。 表1 创建训练作业的基本信息 参数名称 说明 名称 必填,训练作业的名称。 系统会自动生成一个名称,可以根据业务需求重新命名,命名规则如下: 支持1~64位字符。 可以包含大小写字母、数字、中划线(-)或下划线(_)。 描述 训
集和测试集的大小分别为(50000,3,32,32)和(10000,3,32,32)。 考虑到下载cifar10数据集较慢,基于torch生成类似cifar10的随机数据集,训练集和测试集的大小分别为(5000,3,32,32)和(1000,3,32,32),标签仍为10类,指定custom_data
ir/code/train.py 使用Ascend自定义镜像训练时的训练代码适配规范 使用NPU资源创建训练作业时,系统会在训练容器里自动生成Ascend HCCL RANK_TABLE_FILE文件。当使用预置框架创建训练作业时,在训练过程中预置框架会自动解析Ascend HCCL