检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
http_proxy=http://proxy.modelarts.com:80 \ HTTPS_PROXY=http://proxy.modelarts.com:80 \ https_proxy=http://proxy.modelarts.com:80 USER root
中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。 GeneralPretrainHandler解析
print(info) 参数说明 表1 Estimator初始化参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法请参考Session鉴权。 job_id 是 String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance
S的系统权限。子用户的IAM权限是由其主用户设置的,如果主用户没有赋予OBS的putObjectAcl权限即会导致创建模型构建失败。 处理方法 了解ModelArts依赖的OBS权限自定义策略,请参见ModelArts依赖的OBS权限自定义策略样例。 在统一身份认证服务为用户增加
├── evaluators ├── evaluator.py # 数据集数据预处理方法集 ├── model.py # 发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板
stable_diffusers_train.sh。 bash stable_diffusers_train.sh Step4 下载模型和数据集 数据集下载地址:https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions。 启动脚本前的两
json,放在weights文件夹下。 下载链接:https://huggingface.co/stabilityai/sd-vae-ft-ema/tree/main 下载text_encoder权重,放在weights_t5文件夹下。 下载链接:https://huggingface.co/
ata/finetune/ 用户自定义执行数据处理脚本修改参数说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
ModelArts-Console访问地址 华北-北京四 https://console.huaweicloud.com/modelarts/?region=cn-north-4#/dataLabel?tabActive=labelConsole 华北-北京一 https://console.huaweicloud
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
原因2:NCCL_SOCKET_IFNAME设置错误。当用户的NCCL版本低于2.14时,则需要手动设置NCCL_SOCKET_IFNAME环境变量。 处理方法 针对原因1,需要在代码中补充如下环境变量。 import os os.environ["NCCL_IB_TC"] = "128" os.
将OBS中的文件下载到Notebook,可以通过在Notebook中运行代码的方式完成数据下载,具体方式有2种,ModelArts的SDK接口或者调用MoXing接口。 方法一:使用ModelArts SDK接口将OBS中的文件下载到Notebook后进行操作。 示例代码: 1 2 3 from modelarts
\ -w {output_path} --debug 参数说明如下: --datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。
\ -w {output_path} --debug 参数说明如下: --datasets:评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法。 --hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。
中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。 GeneralPretrainHandler解析
中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。 GeneralPretrainHandler解析
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images