检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然后使用保存镜像功能。后续训练作业
池时默认会安装ICAgent,可能由于用户自行卸载ICAgent,导致资源池数据显示异常。 处理方法 登录“应用运维管理”控制台,在“配置管理 > Agent管理”中,选择未安装ICAgent的集群,并单击“安装ICAgent”。 图1 安装ICAgent 建议不要随意卸载ICA
在ModelArts中如何查看OBS目录下的所有文件? 在使用Notebook或训练作业时,需要查看目录下的所有文件,您可以通过如下方式实现: 通过OBS管理控制台进行查看。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件。 通过接口判断路径是否存在。在已有的Notebook实例,或者创建一个N
对Qwen系列模型中的tokenizer 文件,需要修改代码。 修改tokenizer目录下面modeling_qwen.py文件的第38和39行,修改后如图3所示。 图3 修改Qwen tokenizer文件 父主题: 训练脚本说明
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ 父主题:
针对Qwen系列模型中的tokenizer文件,需要修改代码。 修改tokenizer目录下面modeling_qwen.py文件的第38和39行,修改后如图3所示。 图3 修改Qwen tokenizer文件 父主题: 训练脚本说明
d_patch/models/falcon2/ 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/tokenizers/falcon-11B/ 父主题:
位置”对应的OBS路径下。 路径获取方式: 在ModelArts管理控制台,进入“数据管理>数据集”。 选择需查看数据集,单击名称左侧小三角,展开数据集详情。可获得“数据集输出位置”指定的OBS路径。 进入OBS管理控制台,根据上述步骤获得的路径,找到对应版本号目录,即可获取数据集对应的标注结果。
Notebook中安装依赖包并保存镜像 在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 通过运行install.sh脚本,会git clone下载Megatron-LM、M
user_conda/sfs-new-env 添加新创建的虚拟环境到conda env。 # shell conda config --append envs_dirs /home/ma-user/work/envs/user_conda/ 查看现有的conda虚拟环境,此时新的
解决方案 找到.ssh文件夹。一般位于“C:\Users”,例如“C:\Users\xxx”。 “C:\Users”目录下的文件名必须和Windows登录用户名完全一致。 右键单击.ssh文件夹,选择“属性”。然后单击“安全”页签。 单击“高级”,在弹出的高级安全设置界面单击“禁用继承”,
以上述现象为例,通过修改use_ascend参数值对模型替换,可以发现:当text_encoder模型为onnx模型,其余模型为mindir模型时,能够得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。
ud_patch/models/falcon2 复制config.json文件至加载的权重文件/tokenizer目录下,参考路径上传代码和权重文件到工作环境中的步骤3。 cp -f config.json {work_dir}/model/falcon-11B/ glm4-9b模型
完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明 1 load failed 图片无法被解码且不能修复 ignore
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: Standard自动学习
Workflow资产名称,该参数未填写时默认使用Workflow的名称作为资产名称 否 str visibility Workflow资产可见性,支持"public"-公开、"group"-白名单、"private"-私有,仅自己可见三种,默认为"private"。 否 str group_users
未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。
使用量化模型 使用量化模型需要在NPU的机器上运行。 启动vLLM前,请开启图模式(参考步骤六 启动推理服务中的配置环境变量),启动服务的命令和启动非量化模型一致。 父主题: 推理模型量化