检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推荐使用“西南-贵阳一”Region上的Server资源和Ascend Snt9B单机。 表1 环境要求 名称 版本 CANN cann_8.0.rc3 驱动 24.1.rc1 PyTorch 2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6
如果没有用户组,也可以创建一个新的用户组,并通过“用户组管理”功能添加用户,并配置授权。如果指定的子用户没有在用户组中,也可以通过“用户组管理”功能增加用户。 使用Cloud Shell 参考前提条件:给子账号配置允许使用Cloud Shell的权限,完成配置。 在ModelArts管理控制台的左侧导航栏中选择“模型训练
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
168.20.0/24重叠,否则会和专属资源池的网段发生冲突,因为专属资源池的默认网段为192.168.20.0/24。专属资源池实际使用的网段可以在资源池的详情页面查看“网络”获取。 条件二:SFS Turbo网段不能与172网段重叠,否则会和容器网络发生冲突,因为容器网络使用的是172网段。
创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以
创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以
Error: Missing required dependencies. Please refer to our FAQ https://aka.ms/vscode-remote/faq/old-linux for additional information. 原因分析 该问题为用户使用VS
费。 Lite Cluster资源池资源释放后不可恢复,请谨慎操作。 退订包年/包月的Lite Cluster资源 登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池 > 弹性集群 Cluster”,在“弹性集群”页面,选择“Lite资源池”页签,查看资源池列表。
当模型名称包含下划线时,下划线涉及转义处理。 处理方法 需要在请求中增加exact_match参数,且参数值设置为true,确保model_name返回值正确。 父主题: 模型管理
云硬盘EVS只要使用就会计费,请在停止Notebook实例后,确认不使用就及时删除数据,释放资源,避免产生费用。 动态扩容EVS操作 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”页面。 选择运行中的Notebook实例,单击实例名
Server资源 使用CES监控Lite Server资源 使用DCGM监控Lite Server资源 父主题: Lite Server资源管理
导致训练失败。 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 Step2 配置环境变量 单击“增加环境变量”,在增加的环境
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
检查当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。 在左侧菜单栏选择“访问权限控制>桶ACL”,检查当前账号是否具备读写权限,如果没有权限,请联系桶的拥有者配置权限。 确保此OBS桶是非加密桶 进入OBS管理控制台,选择当前自动学习项
控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略
配置任务 场景说明 1 配置Lite Server网络 Server资源开通后,需要进行网络配置,才可使其与Internet通信。在后续配置存储和软件环境时需要Server服务器能够访问网络,因此需要先完成网络配置。 2 配置Lite Server存储 Server资源需要挂载数据盘用
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
对资源的消耗。当需要使用的时候,对于停止状态的弹性节点Server,可以通过启动操作重新使用弹性节点Server。 登录ModelArts管理控制台。 在左侧菜单栏中选择“AI专属资源池 > 弹性节点 Server”。 执行如下操作,启动或停止弹性节点Server。 启动弹性节点
naconda(kernel依赖的python环境)的pip进行安装。 使用命令jupyter labextension list --app-dir=/home/ma-user/.lab/console查询 前端插件安装目录为:/home/ma-user/.local/shar
任务验收(管理员) 发起验收 当团队的成员已完成数据标注,标注作业的创建者可发起验收,对标注结果进行抽验。只有当标注成员存在标注完成的数据时,才可以发起验收,否则发起验收按钮为灰色。 录ModelArts管理控制台,在左侧菜单栏中选择“数据准备 >数据标注”,打开数据标注管理页。 选