检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
更多,更不可预测。 核采样 控制生成文本多样性和质量。 最大口令限制 用于控制聊天回复的长度和质量。一般来说,设置较大的参数值可以生成较长和较完整的回复,但也可能增加生成无关或重复内容的风险。较小的参数值可以生成较短和较简洁的回复,但也可能导致生成不完整或不连贯的内容,请避免该值
根据长度分段,默认按照500字拆分,会尽量保留完整句子。 from pangukitsappdev.api.doc_split.factory import DocSplits from pangukitsappdev.api.doc_split.split_config import SplitConfig
用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发 > 提示词管理 > 预置提示词”中获取。
文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如,让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮对话:基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 图1 使用能力调测 表1 能力调测参数说明 参数 说明 温度 用于控制生成文本的多样性和创造力。
"请给我科技行业公司的利润平均值和市值平均值。" 2. "科技行业的公司平均利润和市值都是多少?" 3. "我需要知道科技行业公司的平均利润和平均市值。" 4. "能告诉我一下科技行业公司的平均利润和市值是多少吗?" 5. "请问科技行业的公司,他们的平均利润和市值是多少?" …… 微调数据要求:
提示工程是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户了解大型语言模型的能力和局限性。 提示工程不仅涉及设计和研发提示词,还包括与大型语言模型的交互和研发中的各种技能和技术。它在实现和对接大型语言模型、
标。用于评估模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2:机器翻译、⽂本摘要等生成类任务常用的评价指标。用于评估模型生成句子与实际句子在中词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4:机器翻译、⽂本摘要等生成类任务常用的评价
authentication or AK/SK authentication. # sdk.iam.url= sdk.iam.domain= sdk.iam.user= sdk.iam.password= sdk.iam.project= sdk.iam.ak= sdk.iam.sk= sdk.iam
盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括但不限于阅读理解、文本生成和情感分析等,但不具备对话问答能力。
Integer 响应生成的时间。 choices Array of choices objects 生成的文本列表,包含以下属性: message:生成的文本内容。 index:生成的文本在列表中的索引,从0开始。 usage usage object 该参数可以帮助用户了解和控制模型的使用情况,避免超出Tokens限制。
Agent实例化过程包括注册LLM和注册工具两个部分。 import com.huaweicloud.pangu.dev.sdk.agent.ReactPanguAgent; import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs; public static
时具备文本生成、情感分析等多种能力。 在准备自监督训练数据和有监督微调数据时,除行业数据外,建议混入一定比例的通用数据,防止模型在经过训练后出现通用问答能力下降的情况。 行业数据 : 通用数据的比例按业内经验有1 : 1、1 : 5。实际训练过程中,行业数据和通用数据和的配比需要
提示工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了
占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。 定义一个Tool Retriever: from pangukitsappdev.tool
通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,并将这些信息整合到大模型生成的答案中,从而提供既准确又及时的答案。 登录盘古大模型套件平台,在左侧导航栏中选择“能力调测”。 单击“多轮对话”页签,选择使用N2系列模
选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图3 创建评估 输入评估名称和描述。 图4 输入评估名称
实例化Agent Agent实例化过程包括注册LLM和注册工具两个部分。 from pangukitsappdev.agent.react_pangu_agent import ReactPanguAgent from pangukitsappdev.api.llms.factory import
盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型 token 简介 NLP大模型
规则打分指标 指标名称 说明 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在中词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。
安装依赖的组件包, pip install pangu_kits_app_dev_py gradio python-docx。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam和pangu配置项。信息收集请参考准备工作。 # # Copyright