检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。
“/cache”目录大小请参考训练环境中不同规格资源“/cache”目录的大小。 训练输出路径参数 建议设置一个空目录为训练输出路径。在训练代码中,您需要解析输出路径参数。系统后台会自动上传训练输出至指定的训练输出路径,请保证您设置的桶路径有写入权限和读取权限。
/obsutil cp obs://your_bucket/YOLOX/ /mnt/sfs_turbo/code/ -f -r 本案例中以obsutils方式上传文件,除此之外也可通过SCP方式上传文件,具体操作步骤可参考本地Linux主机使用SCP上传文件到Linux云服务器。
购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。
--accuracy="fp32"--aoe=True config.ini参考内容如下: [ascend_context] input_shape=data:[-1,3,224,224] dynamic_dims=[1],[2],[3] 表3 参数说明 参数名称 功能描述 参数类型
本最佳实践使用以下镜像和规格: 镜像选择:Ubuntu 20.04 x86 64bit SDI3 for Ant8 BareMetal with RoCE and NVIDIA-525 CUDA-12.0。
--tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。
--tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。
--tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。
--hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home/ma-user/nfs/model/Meta-Llama-3-8B。
选择训练策略类型。 sft,复制sft_yaml样例模板内容覆盖demo.yaml文件内容。 lora,复制lora_yaml样例模板内容覆盖demo.yaml文件内容。 dpo,复制dpo_yaml样例模板内容覆盖demo.yaml文件内容。
-hf-num-gpus 1 --batch-size 4 \ -w {output_path} --debug 参数说明如下: --datasets, 评测的数据集及评测方法,其中 mmlu 是数据集,ppl 是评测方法 --hf-type, HuggingFace模型权重类型
仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。
将自定义镜像创建为模型:将上传至SWR服务的镜像导入ModelArts的模型管理。 将模型部署为在线服务:将导入的模型部署上线。 本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或者应用本地已有的主机进行自定义镜像的制作。
登录ModelArts管理控制台。 在左侧导航栏中,选择“模型训练 > 训练作业”进入训练作业列表。 单击“创建训练作业”,进入创建训练作业页面,填写作业信息,创建方式参考表1,其他参数填写请参考创建训练作业。
本地构建镜像 以linux x86_x64架构的主机为例,您可以购买相同规格的ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录弹性云服务器。镜像选择公共镜像,推荐使用ubuntu18.04的镜像。
--hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home/ma-user/nfs/model/Meta-Llama-3-8B。
--hf-type:HuggingFace模型权重类型(base,chat),默认为chat,依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home/ma-user/nfs/model/Meta-Llama-3-8B。
--hf-type:HuggingFace模型权重类型(base,chat), 默认为chat, 依据实际的模型选择。 --hf-path:本地 HuggingFace 权重的路径,比如/home/ma-user/nfs/model/Meta-Llama-3-8B。
finetuning_type full 用于指定微调策略类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。