检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
kv-cache-int8量化支持的模型请参见表3。 Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用Notebook进行AI开发调试 Notebook使用场景 创建Notebook实例 通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook
持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA
型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NV
型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NV
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
像制作。 在您使用自定义镜像功能时,ModelArts可能需要访问您的容器镜像服务SWR、对象存储服务OBS等依赖服务,如果没有授权,这些功能将不能正常使用。建议您使用委托授权功能,将依赖服务操作权限委托给ModelArts服务,让ModelArts以您的身份使用依赖服务,代替您
https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
Lite Server使用前必读 Lite Server使用流程 Lite Server高危操作一览表 Lite Server算力资源和镜像版本配套关系
Lite Cluster使用前必读 Lite Cluster使用流程 Lite Cluster高危操作一览表 不同机型的对应的软件配套版本
如果不再使用ModelArts,如何停止收费? 在ModelArts中进行AI全流程开发时,主要包括存储费用、资源费用。如果不再使用ModelArts,需要停止/删除ModelArts中运行的服务;删除在OBS中存储的数据;删除在EVS中存储的数据。 清理存储数据 由于Model
)下均可以使用。目前,提供的MoXing Framework功能中主要包含操作OBS组件,即下文中描述的mox.file接口。 Moxing主要使用场景为提升从OBS读取和下载数据的易用性,适配对象为OBS对象桶,对于OBS并行文件系统部分接口可能存在问题,不建议使用。生产业务代码开发建议直接调用OBS
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
sha256 安装命令: pip install tailor-0.3.4-py3-none-any.whl 使用指导 tailor支持“命令行”和“Python API”两种方式使用。 命令行方式 命令行运行示例: tailor --model_path="./resnet50-v2-7
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
重置节点后无法正常使用? 问题现象 当ModelArts Lite的CCE集群在资源池上只有一个节点,且用户设置了volcano为默认调度器时,在ModelArts侧进行重置节点的操作后,节点无法正常使用,节点上的POD会调度失败。 原因分析 在ModelArts侧进行节点重置后
s数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “