检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发起方执行恶意脚本,试图篡改所获取的路径中的作业训练结果。 图2 执行恶意脚本 发起方执行恶意脚本后,由于安全沙箱确保每个横向联邦作业都是隔离的,当某个作业想去访问或篡改其他作业相关的文件时,无法找到作业执行结果文件,因此脚本执行失败、无法篡改,从而实现安全防护。 图3 恶意脚本执行结果
台手动导入模型文件,而是直接将模型文件上传到数据目录进行管理。 使用文件管理功能后,创建联邦学习作业时用户可以便捷地选择自己以前上传的执行脚本、训练模型、数据文件、权重参数文件,极大地提高了系统的易用性及可维护性。 创建文件 用户登录TICS控制台。 进入TICS控制台后,单击页
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data set) 数据集为计算节点获取并配置的合作方数据的元数据信息,以及附加其上的隐私策略。
数据类型,DWS.DWS类型数据集,LOCAL_CSV.本地文件类型数据集,MRS.HIVE类型数据集,MYSQL.MySql类型数据集,ORACLE.Oracle类型数据集,RDS.RDS类型数据集 description String 描述 id String 数据集id name String
含一个csv文件,且所有csv文件的特征数保持一致。此外,选择数据集的原始文件,需要指定csv文件的“分隔符”、“是否包含表头”。“是否包含表头”是指文件的第一行是否是每一个字段的名称。 数据结构:配置每个字段的类别标签,包括以下几种: “字段类型”:支持BOOLEAN、TINY
sets 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成 league_id 是 String 空间ID,最大32位,由字母和数字组成 表2 Query参数 参数 是否必选 参数类型 描述 dataset_type
PUT /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成 league_id 是 String
S服务无法主动感知到节点资源大小,需客户手动填入。 图1 资源分配策略 这样就会有不合理的资源分配场景出现,最终导致计算节点容器因资源不足启动失败。 约束条件 约束条件如下: TICS计算节点需独享ief纳管节点。 考虑docker\ief边缘服务对资源的占用,建议策略分配参考表1。
创建训练型横向联邦学习作业 配置作业的执行脚本,训练模型文件。 执行脚本是每个参与方的计算节点在本地会执行的模型训练、评估程序,用于基于本地的数据集训练子模型。 训练模型文件则定义了模型的结构,会用于每个参与方在本地初始化模型。 图2 配置执行脚本、训练模型文件 配置已方、对方数据集。
0为该线性模型的系数加上偏置项。 图2 查看模型结果文件 本地利用测试集评估模型。可以采用如下脚本,会打印出模型在测试集上的准确率和AUC两个指标。 图3 本地评估模型的Python脚本 父主题: 测试步骤
GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成 league_id 是 String
样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区
横向联邦学习场景 TICS从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述 测试步骤 实验结果
模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
行日志。 连接器(Connector) 连接器是可信智能计算节点内置的连接特定数据源所需的对象模板,目前支持连接MRS Hive、MySQL、RDS、DWS、ORACLE等多种连接器,并支持扩展增加新的连接器。 数据集(Data set) 数据集为计算节点获取并配置的合作方数据的元数据信息,以及附加其上的隐私策略。
功能。 云审计服务 TICS使用云审计服务(Cloud Trace Service,简称CTS)审计用户在管理控制台页面的操作,可用于检视是否存在非法或越权操作,完善服务安全管理。 消息通知服务 TICS使用消息通知服务(Simple Message Notification,简
”,且长度为1~128个字符 描述 作业的详细描述信息。 作业类型 用户下拉选择所需作业类型即可。 运行环境 表示可信联邦学习作业在本地运行。 执行脚本 用户本地的自定义执行脚本,样例请参考准备本地横向联邦数据资源中步骤4。 训练模型 用户自定义模型,样例请参考准备本地横向联邦数据资源中步骤3。 初始权重参数
如果不勾选任何特征,会提示“选择两个数据集,一个有标签,一个无标签,且至少选择一个无标签方特征,才可启动训练。” 图7 特征选择 图8 查看特征分箱woe值 在页面右下角单击“启动训练”进行模型训练。 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。 常规配置: