检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
切换Lite Server服务器操作系统 场景描述 Lite Server为一台弹性裸金属服务器,您可以使用BMS服务提供的切换操作系统功能,对Lite Server资源操作系统进行切换。本文介绍以下三种切换操作系统的方式: 在BMS控制台切换操作系统 使用BMS Go SDK的方式切换操作系统
创建ModelArts数据清洗任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
创建资源池 功能介绍 用户创建资源池。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/pools 表1 路径参数 参数 是否必选
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:0_pl_pretrain_13b.sh训练脚本后,脚本检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
SD1.5&SDXL ComfyUI、WebUI、Diffusers套件适配PyTorch NPU的推理指导(6.3.909) 本文档主要介绍如何在DevServer环境中部署Stable Diffusion模型对应SD1.5和SDXL的ComfyUI、Webui和Diffusers框架,使用NPU卡进行推理。
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 若已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
(可选)本地服务器安装ModelArts SDK 如果需要在个人PC或虚拟机上使用ModelArts SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。
Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个
预测结果:上传一张手写数字图片,发起预测请求获取预测结果。 Step7 清除资源:运行完成后,停止服务并删除OBS中的数据,避免不必要的扣费。 准备工作 已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 配置委托访问授权 ModelArts使用过程
使用AOM查看Lite Cluster监控指标 ModelArts Lite Cluster会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况并上报到AOM,用户可直接在AOM上查看默认配置好的基础指标,也支持用户自定义一些指标项上报到AOM查看。
Step3 准备镜像主机 Step4 制作自定义镜像 Step5 上传镜像至SWR服务 Step6 在ModelArts上创建训练作业 前提条件 已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 Step1 创建OBS桶和文件夹 在OBS服
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
标一定小于第二个点的y坐标)。 polygon [[0,100],[50,95],[10,60],[500,400]] 多个点组成,按顺序连接成一个多边形。 circle [[100,100],[50]] 一个圆心点和半径组成。 line [[0,100],[50,95]] 两个