检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的请求URI。 图2 预置模型的调用路径
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
并根据设定的轮数生成新数据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签的数据添加标签或对现有的标签进行重新标注,以提升数据集的标注质量。用户可以针对不同的数据集灵活地选择对应的标注项,还可
编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 启动。单击操作列的“启动”,再单击弹窗的“确定”,可以启动训练任务。 克隆。单击操作列的“更多 > 克隆”,可以复制当前训练任务。 重试。单击操作列的“更多 > 重试”,可以编辑运行失败的节点,重试该节点的训练。 删除。单击操作列的“更多
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为
工作空间功能旨在为用户提供灵活、高效的资产管理与协作方式。平台支持用户根据业务需求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出
明确任务需求 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式的区别如下: 包年/包月计费模式:包年/包月的计费模式是一种预付费方式,按订单的购买周期计费,适用于可预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服
其中,before文件夹:包含变化前的图片,每幅图片需与变化后的图片同名、同尺寸。 after文件夹:包含变化后的图片,每幅图片需与变化前的图片同名、同尺寸。 label文件夹:包含与变化前和变化后图片同名、同尺寸的PNG文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类
{Endpoint}为IAM的终端节点,可以从地区和终端节点获取。接口的认证鉴权请参见认证鉴权。 响应示例如下,例如,对话机器人服务部署的区域为“cn-north-4”,响应消息体中查找“name”为“cn-north-4”,其中projects下的“id”即为项目ID。 {
动(重启评测任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,可进行如下操作: 克隆。单击操作列的“ 克隆”,可以复制当前评测任务。 启动。单击操作列的“启动”,可以重启运行失败的评测任务。
对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型能够捕捉语言中的细微差别和复杂模式,无论
况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
等,提高油气资源的开发利用效率。进行产能分级预测,例如预测油井的产能等级,优化油气生产计划。 电力行业:进行电力负荷预测,例如根据历史负荷数据,预测未来的电力负荷,优化电力生产和调度。 钢铁行业:进行钢水温度预测,例如预测钢水温度,提高浇注和连铸的准确性和效率。 2024年12月
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
Gallery”页签,可对从AI Gallery订阅的数据资产执行以下操作: 查看订阅信息。单击具体数据资产或操作列的“查看订阅信息”,查看该资产的名称描述等订阅信息。 编辑属性操作。单击操作列的“更多 > 编辑属性”,可编辑数据资产的名称、描述以及资产可见性。 删除操作。单击操作列的“更多 > 删除”,可删除当前数据资产。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每
同一资源是否同时支持包年/包月和按需计费两种模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费。 数据智算单元、数据通算单元默认采用按需计费。 训练单元采用包周期和按需计费两种方式。 两种计费方式不能共存,只支持按照一种计费方式进行订购。 父主题: 计费FAQ
在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调