检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-
表5 Allocated 参数 参数类型 描述 value Value object 资源量。 timestamp String UTC时间,格式yyyy-MM-dd'T'HH:mm:ss'Z'。 window String 统计间隔,1s表示1秒,1m表示1分钟,1h为1小时。 表6
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式转换 AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_
String batch服务类型必选。批量任务中调用的推理接口,即模型镜像中暴露的REST接口,需要从模型的config.json文件中选取一个api路径用于此次推理;如使用ModelArts提供的预置推理镜像,则此接口为/。 mapping_type 否 String batc
MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维
# 参考input_params格式描述 output_params=output_params, # 参考output_params格式描述
--input:原始数据集的存放路径。支持 .parquet \ .csv \ .json \ .jsonl \ .txt \ .arrow 格式。 --output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data) --tokenizer-
MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维
MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec
get_tokenized_data()中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。
get_tokenized_data()中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。
get_tokenized_data()中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。
ct的Token信息,即scope参数的取值为project。 预测文件的本地路径既可使用绝对路径(如Windows格式"D:/test.png",Linux格式"/opt/data/test.png"),也可以使用相对路径(如"./test.png")。 在线服务的调用地址和输
此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info
创建项目的时候,数据集输入位置没有可选数据 可能原因 创建的OBS桶与创建项目不在同一个区域。 账号没有配置全局授权。 OBS桶里的数据格式不符合要求。 解决方法 查看ModelArts创建的项目与创建的OBS桶是否在同一区域。 查看创建的OBS桶所在区域。 登录OBS管理控制台。
详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式转换 AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_
MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维
get_tokenized_data()中调用self._filter方法处理每一个sample self._filter在基类中未定义,需要各个子类针对目标数据集格式进行实现 所有handler依据实际数据集实现self._filter方法,处理原始数据集中的单一sample,其余方法复用基类的实现。