检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
t.txt”的内容。 positive positive negative positive OBS上传操作步骤: 执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 下载代码之后需要修改llm_train/AscendSpeed/scripts/install.sh文件。具体为删除install.sh的第43行
情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA Data Loading Library(DALI)等工具提高数据增强的速度。 模型保存不要太频繁:模型保存操作一般会阻塞训练,如果模型较大,并且较频繁地进行保存,就会影响GPU/NPU利用率。同
ue 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Dee
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
信息可以参考下图查看,组织名称在“容器镜像服务>组织管理”创建。 注册镜像 在ModelArts Console上注册镜像 登录ModelArts控制台,在左侧导航栏选择“镜像管理”,进入镜像管理页面。 单击“注册镜像”,镜像源即为步骤1中推送到SWR中的镜像。请将完整的SWR地
别的IOPS。obsutil是一款用于访问管理华为云对象存储服务(Object Storage Service,OBS)的命令行工具,您可以使用该工具对OBS进行常用的配置管理操作,如创建桶、上传文件/文件夹、下载文件/文件夹、删除文件/文件夹等。对于熟悉命令行程序的用户,obs
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
减小,并逐渐趋于稳定平缓。可以使用可视化工具TrainingLogParser查看loss收敛情况。 FAQ 问题:使用TrainingLogParser工具解析训练日志中loss数据,坐标栏空白,未显示数据走势曲线。 解决方法:在解析工具页面右侧,单击日志文件名右边的设置图标,在弹出的窗口中修改Loss
对于数据标注这种操作,可以在标注完成后自动帮助用户发布新的数据集版本,结合as_input的能力提供给后续节点使用。 当模型训练需要更新数据时,可以使用数据集导入节点先导入新的数据,然后再通过该节点发布新的版本供后续节点使用。 属性总览 您可以使用ReleaseDatasetStep来构建数据集版本发布节
在创建OBS桶创建的桶下创建文件夹用以存放数据,例如在桶standard-qwenvl-7b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://standard-qwenvl-7b └── training_data
在创建OBS桶创建的桶下创建文件夹用以存放数据,例如在桶standard-qwenvl-7b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://standard-qwenvl-7b └── training_data
本教程需要使用到的AscendCloud-3rdLLM-xxx.zip软件包中的关键文件介绍如下。 ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
04的官方镜像,或者nvidia官方提供的带cuda驱动的镜像。相关镜像直接到dockerhub官网查找即可。 构建流程:安装所需的apt包、驱动,配置ma-user用户、导入conda环境、配置Notebook依赖。 推荐使用Dockerfile的方式构建镜像。这样既满足dockerfile可追溯及构建归档的需求,也保证镜像内容无冗余和残留。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 代码上传至OBS 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。
面向AI开发零基础的用户 从0-1制作自定义镜像并创建AI应用 针对ModelArts不支持的AI引擎,您可以构建自定义镜像,并将镜像导入ModelArts,创建为模型。本案例详细介绍如何使用自定义镜像创建模型,并部署成在线服务。 面向熟悉代码编写和调测的AI工程师,同时熟悉docker容器知识