检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。
主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。 缺点:资源申请周期长,购买成本高,管理视角下资源使用效率较低。 环境开通指导参考:DevServer资源开通
path导致服务启动调用冲突的,需在实例启动后,再指定PYTHONPATH、sys.path; 用户使用了已开启sudo权限的专属池,使用自定义镜像时,sudo工具未安装或安装错误; 用户使用的cann、cuda环境有兼容性问题; 用户的docker镜像配置错误、网络或防火墙限制、镜像构建问题(文件权
最佳实践。\n\n2.培训和教育:确保您和您的同事接受了必要的培训和教育,以了解正确的安全准则和行为。\n\n3.使用正确的工具和设备:确保您使用正确的工具和设备,并且它们得到了正确的维护和保养。\n\n4.个人防护装备:确保您和您的同事穿戴正确的个人防护装备,如安全鞋、透明眼镜或面罩、手套等。\n\n5
本地已安装2019.2-2023.2之间(包含2019.2和2023.2)版本的PyCharm专业版工具,推荐Windows版本,社区版或专业版均可,请单击PyCharm工具下载地址获取工具并在本地完成安装。 使用PyCharm ToolKit远程连接Notebook开发环境,仅限PyCharm专业版。
|──llm_inference # 推理代码包 |──llm_tools # 推理工具 修改代码 将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚
# 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块
patch # 社区昇腾适配的补丁包 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方
参数 是否必选 参数类型 描述 delete_source 否 Boolean 是否删除源文件,对非文本类型数据集有效(文本类型数据集因为是导入的整个文本文件,故删除一条样本不会对源文本有影响)。可选值如下: false:不删除源文件(默认值) true:删除源文件(注意:此操作可
在“运行时长控制”选择是否指定运行时长。 不限时长:不限制作业的运行时长,AI Gallery工具链服务部署完成后将一直处于“运行中”。 指定时长:设置作业运行几小时后停止,当AI Gallery工具链服务运行时长达到指定时长时,系统将会暂停作业。时长设置不能超过计算资源的剩余额度。 说明:
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url 的方
渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。
渐趋于稳定平缓。loss收敛图存放路径对应表1表格中output_dir参数值路径下的training_loss.png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。
py”中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如表1所示。导入语句所涉及的Python包在ModelArts环境中已配置,用户无需自行安装。 表1 各模型类型的父类名称和导入语句 模型类型 父类 导入语句 TensorFlow TfServingBaseService
# 推理构建镜像启动脚本 ├──llm_tools # 推理工具包 ├──AutoSmoothQuant # W8A8量化工具 ├── ascend_autosmoothquant_adapter # 昇腾量化使用的算子模块
Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。 Atlas 800训练服务器备件查询助手
add-template 加载镜像构建模板。 get-image 查询ModelArts已注册镜像。 register 注册SWR镜像到ModelArts镜像管理。 unregister 取消注册ModelArts镜像管理中的已注册镜像。 build 基于指定的Dockerfile构建镜像 (只支持ModelArts