检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从DWS导入数据到ModelArts数据集 ModelArts支持从DWS导入表格数据,用户需要选择对应的DWS集群,并输入需要对应的数据库名、表名以及用户名和密码。所导入表的schema(列名和类型)需要跟数据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据
从DLI导入数据到ModelArts数据集 表格数据集支持从DLI导入数据。 从DLI导入数据,用户需要选择DLI队列、数据库和表名称。所选择的表的schema(列名和类型)需与数据集一致,支持自动获取所选择表的schema。DLI的详细功能说明,请参考DLI用户指南。 图1 DLI导入数据
从OBS导入数据到ModelArts数据集 从OBS导入数据到数据集场景介绍 从OBS目录导入数据到数据集 从Manifest文件导入数据到数据集 从OBS目录导入数据规范说明 从Manifest文件导入规范说明 父主题: 导入数据到ModelArts数据集
导入模型提示该账号受限或者没有操作权限 问题现象 在导入AI应用时,提示用户账号受限。 原因分析 提示用户账号受限,常见原因有如下几种: 导入模型账号欠费导致被冻结; 导入模型账号没有对应工作空间的权限; 导入模型账号为子账号,主账号没有给子账号赋予模型相关权限。 权限说明请参见:策略及授权项说明;
在节点页签,单击选择“配置工具”,弹出该节点的配置工具页面。 在配置工具页面,单击“下载”启动下载任务。当配置工具的状态记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在
_vllm.sh及SSL证书。此处以chatglm3-6b为例。 ascend_vllm代码包在Step9 构建推理代码已生成。 模型权重文件获取地址请参见表1。 推理启动脚本run_vllm.sh制作请参见•创建推理脚本文件run_vllm.sh。 SSL证书制作包含cert.pem和key
msprobe工具使用指导 msprobe API预检 msprobe精度比对 msprobe梯度监控 父主题: GPU业务迁移至昇腾训练推理
密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 安装SSH工具 下载并安装SSH远程连接工具,以PuTTY为例,下载链接。 Step2 使用puttygen将密钥对.pem文件转成.ppk文件 下载puttygen,并双击运行puttygen。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
推理启动脚本run_vllm.sh制作请参见下文创建推理脚本文件run_vllm.sh的介绍。 SSL证书制作包含cert.pem和key.pem,需自行生成。生成方式请参见•通过openssl创建SSLpem证书。 图1 准备模型文件和权重文件 创建推理脚本文件run_vllm.sh run_vllm
中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见支持的模型列表和权重文件。 如果需要部署量化模型,请参考推理模型量化在N
中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。 模型权重文件获取地址请参见支持的模型列表和权重文件。 如果需要部署量化模型,请参考推理模型量化在N
AIGC工具tailor使用指导 tailor简介 tailor是AIGC场景下用于模型转换(onnx到mindir)和性能分析的辅助工具,当前支持以下功能。 表1 功能总览 功能大类 具体功能 模型转换 固定shape转模型 动态shape传入指定档位转模型 支持fp32 支持AOE优化
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 运行“examples/quantize