检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。
如果您使用的是公共资源池,则根据您选择的规格、节点数、运行时长进行计费。计费规则为“规格单价×节点数×运行时长”(运行时长精确到秒)。 如果您使用的是专属资源池,则训练作业就不再进行单独计费。由专属资源池进行收费。 父主题: 计费相关
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。
在CCE集群详情页,选择左侧导航栏的“节点管理”,选择“节点”页签。 在节点列表,单击操作列的“更多 > 查看YAML”查看节点配置信息。 查看节点的yaml文件里“cce.kubectl.kubernetes.io/ascend-rank-table”字段是否有值。
准备工作 准备一套可以连接外部网络,装有Linux系统并安装18.09.7及以上版本docker的虚拟机或物理机用作镜像构建节点,以下称“构建节点”。
具体步骤可参考:HF-Mirror中的使用教程。
如1个8U的节点上同时启动了6个2U的实例,如果其中一个实例CPU使用增大到超过节点的上限(8U)时,k8S会将使用资源最多的实例终止掉。 因此超分会带来实例重启的风险,请不要超分使用。 父主题: 更多功能咨询
在左侧导航栏中,选择“资源管理 > AI专属资源池 > 弹性节点Server”,进入“节点”列表页面。 鼠标移动至节点名称上,复制需要退订的实例ID。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。
具体步骤可参考:HF-Mirror中的使用教程。
您可以使用MrsStep来创建作业类型节点。定义MrsStep示例如下。
原因分析 CPU软锁 在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。
在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。
在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。
继续运行 完成数据的确认之后,返回新版自动学习的页面,在数据标注节点单击“继续运行”,工作流将会继续依次运行直到所有节点运行成功。 图4 继续运行 父主题: 使用自动学习实现文本分类
只支持针对整节点资源复位,请确保部署的在线服务为8*N卡规格,请谨慎评估对部署在该节点的其他服务的影响。 开启故障自动重启 用户可以在部署在线服务任务时,勾选“高级选项”的“现在配置”,可以看到“故障自动重启”参数,打开开关即可。 图1 故障自动重启 父主题: 管理同步在线服务
在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。
在“运行总览”页面中,待服务部署节点的状态变为“等待输入”,双击“服务部署”节点,进入配置详情页,完成资源的参数配置操作。 在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。