检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
https://127.0.0.1:8080/${推理服务的请求路径} 推理部署示例 本节将详细说明以自定义引擎方式创建模型的步骤。 创建模型并查看模型详情 登录ModelArts管理控制台,进入“模型管理”页面中,单击“创建模型”,进入模型创建页面,设置相关参数如下: 元模型来源:选择“从对象存储服务(OBS)中选择”。
PyTorch 2.1.0 步骤一:检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,
|── alpaca_gpt4_data.json #微调数据文件 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-3rdLLM-xxx-xxx.zip上传到${workdir}
hostname和port也必须分别是0.0.0.0和8080不可更改。 Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“资产管理 > AI应用 > 创建”,开始创建AI应用。 设置创建AI应用的相应参数。此处仅介绍关键参数,设
能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 SSH登录机器后,检查NP
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc
已完成训练的模型包,及其对应的推理代码和配置文件,且已上传至OBS目录中。 确保您使用的OBS与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。 在“创建模型”页面,填写相关参数。
IAM管理页面里创建完全由您进行精细化配置的委托(需要委托给ModelArts服务),然后在此页面的委托选择里使用“已有委托”“”(而非“新增委托”)。 至此,您应该已经发现了一个细节,ModelArts在使用委托时,是将其与用户进行关联的,用户与委托的关系是多对1的关系。这意味
|── alpaca_gpt4_data.json #微调数据文件 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩
基础镜像。 Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,
视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 前提条件 在进行数据标注前,需要创建相应类型的数据集。具体步骤参考创建数据集。 操作步骤 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。 在数据标注管理页面,单击页面右上角“
图像色彩的丰富程度”。“物体检测”支持所有的分析指标。目前ModelArts支持的所有分析指标请参见支持分析指标及其说明。 数据特征分析 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 选择对应的数据集,单击操作列的“更多 >
在推理过程中生效。 “inference_params.json”文件的参数请参见表4。该参数会显示在部署推理服务页面,在“高级设置”下会新增“参数设置”,基于配置的推理参数供模型使用者修改自定义镜像的部署参数。 表4 自定义推理参数说明 参数名称 说明 name 参数名称,只能包含英文、数字、下划线。
练)才支持模型自定义训练。 当使用自定义镜像进行模型微调时,要确认镜像是否满足自定义镜像规范,否则无法成功完成自定义训练。 进入模型微调 登录AI Gallery。 单击“模型”进入模型列表。 选择需要进行微调训练的模型,单击模型名称进入模型详情页。 在模型详情页,选择“训练 >
|── alpaca_gpt4_data.json #微调数据文件 上传代码和权重文件到工作环境 使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:
其中,加粗的斜体字段需要根据实际值填写: iam_endpoint为IAM的终端节点。 user_name为IAM用户名。 user_password为用户登录密码。 domain_name为用户所属的帐号名。 cn-north-1为项目名,代表服务的部署区域。 返回状态码“201 Created
Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254
通过APP认证的方式访问在线服务 部署在线服务支持开启APP认证,即ModelArts会为服务注册一个支持APP认证的接口,为此接口配置APP授权后,用户可以使用授权应用的AppKey+AppSecret或AppCode调用该接口。 针对在线服务的APP认证,具体操作流程如下。
其他模型不建议开启,因为性能会有损失。 Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。 图2 创建AI应用 设置创建AI应用的相应参数
5B-Instruct小模型权重文件名为model.safetensors Step2 部署模型 在ModelArts控制台的AI应用管理模块中,将模型部署为一个AI应用。 登录ModelArts控制台,单击“AI应用管理 > AI应用 > 创建”,开始创建AI应用。 图3 创建AI应用 设置创建AI应用的相应参数