检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json文件中apis定义的url一致,当镜像启动时可以直接访问。下面是mnist镜像的访问示例,该镜像内含mnist数据集训练的模型,可以识别手写数字。其中listen_ip为容器IP,您可以通过启动自定义镜像,在容器中获取容器IP。 请求示例 curl -X POST \ ht
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下: <img> </img>
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下: <img> </img>
管理数据集文件 预览文件 在数据集详情页,选择“数据集文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在数据集详情页,选择“数据集文件”页签。单击操作列的“下载”,选择保存路径单击“确认”,即可下载文件到本地。 删除文件
例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
例如:“3-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。
"AAA" "input": "BBB", "output": "CCC" } 执行convert_to_sharegpt.py文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模
创建方式:选择“自定义算法”。 启动方式:选择“自定义”。 镜像:选择上传的自定义镜像。 启动命令: cd ${MA_JOB_DIR}/demo && python main.py -a resnet50 -b 128 --epochs 5 dog_cat_1w/ 此处的“demo”为用户自定义的
管理模型文件 预览文件 在模型详情页,选择“模型文件”页签。单击文件名称即可在线预览文件内容。 仅支持预览大小不超过10MB、格式为文本类或图片类的文件。 下载文件 在模型详情页,选择“模型文件”页签。单击操作列的“下载”,即可下载文件到本地。 删除文件 在模型详情页,选择“模型文
placeholder_type=wf.PlaceholderType.STR, description="请输入一个只包含大小写字母、数字、下划线、中划线或者中文字符的名称。填写已有标注任务名称,则直接使用该标注任务;填写新标注任务名称,则自动创建新的标注任务") ), inputs=wf
创建镜像组织中创建的组织名称,<镜像名称>:<tag>为自定义镜像名称。 打印如下信息,表示构建镜像成功。 图3 成功构建镜像 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
创建镜像组织中创建的组织名称,<镜像名称>:<tag>为自定义镜像名称。 打印如下信息,表示构建镜像成功。 图4 成功构建镜像 如果推理需要使用NPU加速图片预处理,适配了llava-1.5模型,启动时需要设置export ENABLE_USE_DVPP=1,需要安装torchvision_npu,可放到镜像制作脚本
DA、cuDNN等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应的Conda环境和一个基础Conda环境python(不包含任何AI引擎),如预置Mindspore所对应的Conda环境如下: 用户可以根据是否使用AI引擎参与功能调试,并选择不同的Conda环境。
入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参
能包含!<>=&"'特殊字符。 export_images 否 Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) remove_sample_usage 否 Boolean 发布时是否
com”,例如:infer-modelarts-cn-south-1.modelarts-infer.com VPC:选择内网域名关联的VPC。 单击“确定”,完成DNS内网域名的创建。 VPC访问在线服务 通过VPC访问通道访问在线服务,API如下: https://{DNS内网域名}/{URL}
resnet │ ├── model 必选:固定子目录名称,用于放置模型相关文件 │ │ ├──<<自定义Python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 │ │ ├──mnist_mlp.pt 必选,pytorch模型保存文件,保
bashrc export ASCEND_RT_VISIBLE_DEVICES=${ASCEND_RT_VISIBLE_DEVICES} python -m vllm.entrypoints.openai.api_server --model ${model_path} \ --ss
典型的就是训练过程中,需要访问OBS读取用户的训练数据。在这个过程中,就出现了ModelArts“代表”用户去访问其他云服务的情形。从安全角度出发,ModelArts代表用户访问任何云服务之前,均需要先获得用户的授权,而这个动作就是一个“委托”的过程。用户授权ModelArts再