检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。 预测分析:由于预测分析任务的数据集不在数据管
false:不清除数据集已有的usage信息 rotate Boolean 是否对图片进行旋转。可选值如下: true:对图片进行旋转 false:不对图片进行旋转(默认值) rotate_path String 旋转后的文件存放路径。 sample_state String 样本状态。可选样本状态如下:
在弹出的窗口中选择云服务区域,例如该案例选择云服务区域为“华北-北京四”,单击“确定”进入下载详情页。 在“下载详情”页面,填写参数。 下载方式:ModelArts数据集。 目标区域:华北-北京四,目标区域须与上一步中选择的云服务区域保持一致。 数据类型:图片。 数据集输入位置:用来存放源数据集信息,例如本案
据标注页面。单击任意一张图片,进入音频标注页面。 在“音频标注”页面单击“未标注”页签,此页面展示所有未标注的音频数据。依次单击选中待标注的音频,或勾选“选择当前页”选中该页面所有音频,在页面右侧进行标注。 图2 音频标注 添加标注。先对音频进行播放识别,然后选中音频文件,在右侧
false:不清除数据集已有的usage信息 rotate Boolean 是否对图片进行旋转。可选值如下: true:对图片进行旋转 false:不对图片进行旋转(默认值) rotate_path String 旋转后的文件存放路径。 sample_state String 样本状态。可选样本状态如下:
数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详情页,单击“已标注”页签,您可以查看已完成标注的图片列表。图片缩略图下方默认呈现其对应的标签,您也可以勾选图片,在右侧的“选中文件标签”中了解当前图片的标签信息。 查看已标注文本 在数据集详情页,单击“已标
基于ModelArts的手写数字识别 AXYZdong AI 文字编辑图片 instruct-pix2pix 案例 AXYZdong Standard推理部署 上线二维码检测识别服务 林欣 使用ModelArts对8类常见生活垃圾进行分类 福州司马懿 使用ModelArts搭建"花卉种类识别"服务 福州司马懿
过程。通常,用户采集的数据或多或少都会有很多格式问题,无法被进一步处理。以图像识别为例,用户经常会从网上找一些图片用于训练,但是其质量难以保证,有可能图片的名字、路径、后缀名都不满足训练算法的要求;图片也可能有部分损坏,造成无法解码、无法被算法处理的情况。因此,数据校验非常重要,
pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。 确认性能是否满足要求
--served-port ${port} --text 图片内容是什么 相关请求参数说明参照多模态相关请求参数说明。 多模态相关请求参数说明 表1 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json,
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
可选值有以下两种。 “asc”为递增排序。 “desc”为递减排序,默认为“desc”。 search_content 否 String 指定要查询的文字信息,例如参数名称。默认为空。 响应消息 响应参数如表3所示。 表3 响应参数 参数 参数类型 说明 is_success Boolean
Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。 图8 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图9 手写数字图片 图10 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'imag
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下:<img> </img>
使用订阅算法训练结束后没有显示模型评估结果 问题现象 AI Gallery中的YOLOv5算法,训练结束后没有显示模型评估结果。 原因分析 未标注的图片过多,导致没有模型评估结果。 处理方法 对所有训练数据进行标注。 父主题: 预置算法运行故障
ketName/data-cat”。 如需要提前上传待标注的图片,请创建一个空文件夹,然后将图片文件保存在该文件夹下,图片的目录结构如:“/bucketName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标
参数为AppCode值 请求Body按照接口定义传参,本案例中KEY参数为images,选择为File格式,VALUE参数单击上传需要识别的图片。 图6 Headers 图7 Body 图8 返回结果 常见APP认证报错分析 报错信息 "error_msg": "The API does
在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据, 也需要检查是否需要增加新的标签。 在图片都标注完成后,单击右上角“开始训练”,在“训练设置