检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
配置插件 配置插件的步骤如下: 在“高级配置 > 插件”,单击“添加”。 图1 配置插件 在“添加插件”窗口,选择预置插件或个人插件,单击进行添加,最后单击“确定”。若想创建插件可单击右上角“创建插件”,创建插件的步骤请参见创建插件。 图2 添加插件 添加插件后,可在“高级配置”中查看当前已添加的插件。
说明 步骤1:创建应用 本样例场景实现应用的创建。 步骤2:配置Prompt 本样例场景实现应用中的提示词配置。 步骤3:添加预置插件 本样例场景实现应用的插件配置。 步骤4:配置对话体验 本样例场景实现应用的对话体验配置。 步骤5:调试应用 本样例场景实现应用的调试。 步骤1:创建应用
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
管理NLP大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型,但在修改部署时模型不可替换。 在“模型更新”或“修改部署”后进行升级操作时,可选择全量升级或滚动升级两种方式:
管理科学计算大模型部署任务 模型更新、修改部署 成功创建部署任务后,如需修改已部署的模型或配置信息,可以在详情页面单击右上角的“模型更新”或“修改部署”进行调整。更新模型时可以替换模型和修改作业配置参数,但在修改部署时模型不可替换或修改作业配置参数。 在“模型更新”或“修改部署”后进行升
配置Prompt builder 创建Agent的首要步骤就是撰写提示词(Prompt),为Agent设定人设、目标、核心技能、执行步骤。Agent会根据LLM对提示词的理解,来选择使用插件或知识库,响应用户问题。因此,一个好的提示词可以让LLM更好的理解并执行任务,Agent效果与提示词息息相关。
型”,参考表1完成部署参数设置,启动模型部署。 表1 NlP大模型部署参数说明 参数分类 部署参数 参数说明 部署配置 模型来源 选择“盘古大模型”。 模型类型 选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 最大TOKEN长度
配置知识 配置知识的步骤如下: 在“高级配置 > 知识”,单击“添加”。 在“添加知识”窗口,单击“点此上传”,上传知识文件。 图1 添加知识 上传完成后,单击“确定”。 在“高级配置”中,可查看上传成功的知识文件。 图2 知识上传成功 父主题: 手工编排Agent应用
查看NLP大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看模
配架构类型。 资源配置 实例数 设置部署模型是所需的实例数,单次部署服务时,部署实例个数建议不大于10,否则可能触发限流导致部署失败。 基本信息 名称 设置部署任务的名称。 描述(可选) 设置部署任务的描述。 参数填写完成后,单击“立即部署”。 父主题: 部署科学计算大模型
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型
查看科学计算大模型部署任务详情 部署任务创建成功后,可以在“模型开发 > 模型部署”页面查看模型的部署状态。 当状态依次显示为“初始化 > 部署中 > 运行中”时,表示模型已成功部署,可以进行调用。 此过程可能需要较长时间,请耐心等待。在此过程中,可单击模型名称可进入详情页,查看
获取模型部署ID 模型部署ID获取步骤如下: 登录ModelArts Studio大模型开发平台。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图1
数据工程 ModelArts Studio大模型开发平台提供了全面的数据工程功能,支持从数据源导入到数据质量控制的全流程管理。该模块涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts
配置开场白和推荐问题 配置开场白和推荐问题的步骤如下: 在“高级配置 > 开场白和推荐问题”中,可输入自定义开场白,也可单击“智能添加”。 在推荐问中单击“添加”,可增加推荐问数量。添加后可在右侧“预览调试”中查看相应效果。 最多可以添加3个推荐问。 图1 预览调试查看开场白与推荐问效果
配置服务访问授权 配置OBS访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
步处理并最终输出答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Sea