检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用TICS可信联邦学习进行联邦建模
请求示例 根据传入类型,查询可用数据集列表 get https://x.x.x.x:12345/v1/{project_id}/leagues/{league_id}/available-datasets?dataset_type=MRS 响应示例 状态码: 200 查询可用数据集列表成功
击操作栏的“查看结果”或者“作业报告”,可在弹出的页面查看执行结果和作业报告; 在实例列表中,查找待查看计算过程的作业,单击实例ID展开,在操作栏单击“计算过程”。 图4 在计算节点侧查看作业计算过程 计算过程页面可以单击任务节点,查看开始和结束时间等信息。在计算过程页面下方详情
作业。 单击“历史作业”按钮,查看当前作业的执行情况。 单击“计算过程”按钮可以查看作业的具体执行计划。 单击“执行结果”按钮可以查看作业保存的模型文件路径,用于后续的评估型作业。 图4 查看作业的执行情况 图5 查看作业的具体执行计划 图6 查看作业的执行结果 父主题: 测试步骤
通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS API之前,请确保已经充分了解可信智能计算服务TICS相关概念,详细信息请参见产品介绍。 TICS的API可以分为空间API和计算节点API。 使用空间API可以查询TICS空
建多方安全计算作业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。
到目标数据集,可查看该数据集是否已参与其他的预处理作业。 目标数据集需要对所选字段的分布类型进行严格定义。处理评估/预测数据前建议先使用训练数据进行预处理,以确保当数据处理达到目标需求。 图4 创建数据预处理作业 单击“保存”后,可查看数据预处理作业。 图5 查看数据预处理作业 父主题:
您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
多方数据联合风控成为新趋势。其中,黑名单共享查询是风控中的一个重要环节,企业间的黑名单共享能有效发挥风险联防联控效用。 在信息核验过程中,通过隐私计算技术实现多方黑名单数据共享,对电诈、洗钱、骗贷等行为的黑名单用户进行安全求交、匿踪查询,能够有效提升客户背景调查的安全可信程度。
更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 查询节点列表成功 500 查询节点列表失败 父主题: 可信节点管理
的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。 父主题: 可信数据交换场景
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 产品架构 产品架构如图1所示。 图1 产品架构 空间管理 邀请云租户作为数据提
关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了同态加密。DAG图显示了“psi + 同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 前提条件 空间组建完成,参考组建空间。 空间成员完成计算节点部署,参考部署计算节点。 空间成员完成数据发布,参考发布数据。
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
ps -a”命令,查看NAMES为“k8s_db”开头容器的CONTAINER ID,该ID由数字和小写字母组成。 执行“docker exec -it {CONTAINER ID} bash”命令,登录到容器中,命令中的{CONTAINER ID}为步骤2中查询得到的CONTAINER
启用区块链审计服务(可选) 若您希望空间启用区块链服务(BCS)来审计任务信息,请仔细阅读本章节。 空间发起方需要根据基于CCE集群创建联盟链完成空间链的创建过程。 “区块链类型”参数值需要选择“空间链”,否则将影响后续操作。 发起方按照组建联盟链中“邀请成员”部分的描述,邀请参与方加入空间链。 参
用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景