检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
/pretrain_gpt2.sh & 图3 开始预训练 实时查看训练日志,监控程序。 tail -f nohup.out 如果显示如下信息, 表示模型训练完成。 图4 模型训练完成 在训练过程中观察单GPU卡的利用率,如下: 图5 GPU利用率 查看生成的模型checkpoint。 本示例生成的
/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
xecutions/{execution_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 execution_id 是 String
yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data.tgz里面提供的gsm8k和mmlu、ceval数据。 查看精度结果 任务完成之后会在test-benchmark目录下生成excel表格: 精度结果 LLaMAFactory_train_accu
yaml文件中默认配置,权重使用表1 模型权重中指定的Huggingface地址,数据指定data.tgz里面提供的gsm8k和mmlu、ceval数据。 查看精度结果 任务完成之后会在test-benchmark目录下生成excel表格: 精度结果 LLaMAFactory_train_accu
为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 确认信息填写无误,单击“立即创建”,完成模型的创建。 在模型列表中,您可以查看刚创建的模型及其对应的版本。当模型状态变更为“正常”时,表示模型导入成功。在此页面,您还可以创建新版本、快速部署服务、发布模型等操作。 后续操作
包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
注数据操作时,添加或删除标签。 图1 导入数据集-OBS 导入成功后,数据将自动同步到数据集中。您可以在“数据集”页面,单击数据集的名称,查看详细数据,并可以通过创建标注任务进行数据标注。 文件型数据标注状态 数据标注状态分为“未标注”和“已标注”。 未标注:仅导入标注对象(指待
是否必选 参数类型 描述 default_value 否 String 标签属性默认值。 id 否 String 标签属性ID。可通过调用标签列表查询。 name 否 String 标签属性名称。不能超过64个字符,不能包含字符!<>=&"'。 type 否 String 标签属性类型。可选值如下:
包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.910 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_lora_7b.sh 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
L_PATH为必填;TRAIN_ITERS、MBS、GBS、TP、PP、WORK_DIR为非必填,有默认值。 训练完成后,请参考查看日志和性能章节,查看LoRA微调训练的日志和性能。 父主题: Qwen系列模型基于Lite Server适配PyTorch NPU训练指导(6.3.904)
NODE_RANK=0 NPUS_PER_NODE=4 sh scripts/llama2/0_pl_sft_7b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6
速AI产品的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。 如果您是订阅者,可以在AI Gallery中,查找您想要的AI资产,并查看资产详情,对于满足业务需要的资产,您可以直接订阅并推送至ModelArts使用。 如果您是发布者,可以将自己开发的AI资产,发布至AI
在“我的算法”列表,单击算法名称进入详情页,可以查看算法详细信息。 选择“基本信息”页签可以查看算法信息。 “基本信息”页签,单击“编辑”,支持修改除名称和ID之外的算法信息。修改完成,单击“保存”即可完成修改。 选择“训练列表”页签可以查看使用该算法的训练作业信息,例如训练作业名称、状态。
系统将自动推理出物体的轮廓。 完成一张图片标注后,可单击图片下方展开缩略图,查看图片列表,快速选中其他未标注的图片,然后在标注页面中执行标注操作。 图8 标注物体轮廓 单击页面上方“返回数据标注预览”查看标注信息,在弹框中单击“确定”保存当前标注并离开标注页面。 选中的图片被自动