检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和
路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 resource_id 是 String 资源ID,如Notebook实例ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 tags
log”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在
log”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在
dataset_type=None, data_sources=None, work_path=None, **kwargs) 根据数据类型创建数据集,用户可以在相同的数据集上创建不同类型的标注任务,如在图像数据集上创建图像分类、物体检测等标注任务。 create_dataset(session
log”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在
log”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续不需要自动转换,则在
Llama2-13B、Llama2-70B。 方案概览 本文档利用训练框架Pytorch_npu+华为自研Ascend Snt9b硬件,为用户提供了开箱即用的预训练和全量微调方案。 本文档以Llama2-70B为例,同时适用于Llama2-7B、Llama2-13B。模型运行环境是ModelArts
/v1/{project_id}/services/{service_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID。 请求参数 表2 请求Header参数 参数
Ascend-vLLM是华为云针对NPU优化的推理框架,继承了vLLM的优点,并通过特定优化实现了更高的性能和易用性。它使得在NPU卡上运行大模型变得更加高效和便捷,为用户带来了极大的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。
Ascend-vLLM是华为云针对NPU优化的推理框架,继承了vLLM的优点,并通过特定优化实现了更高的性能和易用性。它使得在NPU卡上运行大模型变得更加高效和便捷,为用户带来了极大的便利和性能提升。Ascend-vLLM可广泛应用于各种大模型推理任务,特别是在需要高性能和高效率的场景中,如自然语言处理、图像生成和语音识别等。
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和
Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和
#tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── model #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |──
#原始权重及tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data #原始数据目录,需要用户手动创建,后续操作步骤中会提示 |── t
为必填;TRAIN_ITERS、MBS、GBS、TP、PP、WORK_DIR为非必填,有默认值。 图1 保存的ckpt 可以参考查看日志和性能操作,查看断点续训练日志和性能。 父主题: 预训练
S、MBS、GBS、TP、PP、WORK_DIR、SEQ_LEN为非必填,有默认值。 图1 保存的ckpt 训练完成后,可以参考查看日志和性能操作,查看断点续训练日志和性能。 父主题: 预训练
指定算法所属的ai项目,默认值为"default-ai-project"。ai项目已下线,无需关注。 user_name String 用户名称。 domain_id String 用户的domainID。 source String 算法来源类型。 api_version String 算法api版本,标识新旧版。