检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。 父主题: 开发盘古大模型提示词工程
获取项目ID 从控制台获取项目ID 登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服
性能。当前仅支持对NLP大模型进行压缩。采用的压缩方式是INT8,INT8量化压缩可以显著减小模型的存储大小,降低功耗,并提高计算速度。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型压缩”,单击
管理工作流 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“工作流”页签中,鼠标右键单击工作流,进行工作流的复制、复制ID、删除。 父主题: 创建与管理工作流
手工编排Agent应用流程 手工编排Agent应用流程步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发”,将跳转至Agent开发平台。 单击左侧导航栏“工作台”,在“应用”页签,单击右上角“创建应用”。 您也可以鼠
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型
能会有违规风险,建议开启。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则,不可调整。 资源配置 实例数 设置部署模型时所需的实例数,单次部署服务时,部署实例个数建议不大于10,否则可能触发限流导致部署失败。 基本信息 名称 设置部署任务的名称。 描述(可选) 设置部署任务的描述。
部署NLP大模型 创建NLP大模型部署任务 查看NLP大模型部署任务详情 管理NLP大模型部署任务 父主题: 开发盘古NLP大模型
化对话问答功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进
创建提示词评估任务 选择候选提示词进行批量自动化评估,步骤如下:。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
全量升级:新旧版本的服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。 图1 模型更新 图2 修改部署 父主题:
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
管理NLP大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:
设置模型部署参数信息,平台已给出默认值。 架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 资源配置 实例数 设置部署模型是所需的实例数,单次部署服务时,部署实例个数建议不大于10,否则可能触发限流导致部署失败。 基本信息 名称 设置部署任务的名称。 描述(可选) 设置部署任务的描述。
训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 开发盘古大模型提示词工程
督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不
量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。 父主题: 撰写提示词
创建科学计算大模型训练任务 创建科学计算大模型训练任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,单击界面右上角“创建训练任务”。 在“创建训练任务”页面,模型类型选择“科学