已找到以下 130 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 获取推荐结果 - 推荐系统 RES

    获取推荐结果 智能创建完成,运行成功后,当服务状态会显示“运行中”,表示状态正常。您可以通过预测功能测试推荐结果进一步调整作业参数,也可以通过预测接口来调用API,获取推荐结果。 如果近线数据源有更新,需要重新调度召回策略,才会有对应的推荐结果。 预测 登录RES管理控制台,在左侧菜单栏中选择

  • 排序策略 - 推荐系统 RES

    排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机

  • 排序策略-离线排序模型 - 推荐系统 RES

    排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算法通过在线性回归的基础上叠加一个

  • 排序策略-离线特征工程 - 推荐系统 RES

    排序策略-离线特征工程 表1 特征工程参数说明 参数名称 说明 名称 自定义离线特征工程名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征

  • 召回策略 - 推荐系统 RES

    召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐

  • 在线服务 - 推荐系统 RES

    在线服务 在线服务用来做线上推荐时的应用,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。 表1 在线服务参数说明 参数名称 子参数 说明 召回池 “推荐候选集” “添加推荐候选集” 选择表名:添加离线、近线任务或者在线自定义检索召回策略生成的候选集进行融合

  • 自定义场景(热度推荐) - 推荐系统 RES

    自定义场景(热度推荐) RES提供了推荐算法,让用户能够根据场景自定义推荐策略,可以基于RES提供的多种召回、排序算法等进行自定义的推荐场景创建。 本章节介绍热度推荐场景的搭建样例,该场景常见于电商或者视频网站首页的排行榜或者畅销榜等。 上述推荐场景在RES的自定义场景通过简单配置和计算

  • 数据结构 - 推荐系统 RES

    数据结构 当数据源创建完成,您可以进入数据源详情页面进行数据质量管理操作。数据质量管理操作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。过滤规则说明请参见图1。 图1 过滤规则 创建过滤规则 在“创建过滤规则”页面,用户可以对目标数据选择不同策略进行离线计算,得到合适的候选集。 创建过滤规则操作步骤如下: 在“离线作业”下,单击“过滤规则”页签,单击该页面做上方

  • 智能场景(猜你喜欢) - 推荐系统 RES

    智能场景(猜你喜欢) RES提供了智能场景包括猜你喜欢、热门推荐和关联推荐。仅需要简单的配置和作业训练,即可获取推荐结果。 本章节以猜你喜欢为例,帮助您快速熟悉智能场景的使用过程。开始使用样例前,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用智能场景获取推荐结果的步骤如下所示