检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是提示词工程 提示词工程简介 提示词工程(Prompt Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应
评估图片类数据集 发布图片类数据集前,ModelArts Studio大模型开发平台支持对数据集进行评估操作,帮助用户优化数据质量,确保数据满足高标准,提升模型性能。 如果无需使用数据评估操作,可跳过此章节至发布图片类数据集。 创建图片类数据集评估标准 ModelArts Stu
新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分
用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。 针对预训练阶段,还可以继续进行训练,这一过程称为增量预训练。增量预训练是在已经完成的预训练的基础上继续训练模型。增量预训练旨在使模型能
盘古NLP大模型调优实践 模型调优方法介绍 优化训练数据的质量 优化训练超参数 优化提示词 优化推理超参数 调优典型问题 父主题: 模型调优实践
、API网关和高级安全服务,各项云服务,租户数据,以及身份账号和密钥管理等方面的安全配置。 《华为云安全白皮书》详细介绍华为云安全性的构建思路与措施,包括云安全战略、责任共担模型、合规与隐私、安全组织与人员、基础设施安全、租户服务与租户安全、工程安全、运维运营安全、生态安全。 图1
分布不均而引发的问题。 通过这些数据加工操作,平台能够有效清理噪声数据、标准化数据格式,并优化数据集的整体质量。数据加工不仅仅是简单的数据处理,它还会根据数据类型和业务场景进行有针对性的优化,从而为模型训练提供高质量的输入,提升模型的表现。 数据加工意义 数据加工在大模型开发中具
盘古科学计算大模型调优实践 模型调优方法介绍 数据预处理优化 训练参数优化 评估模型效果 调优典型问题 父主题: 模型调优实践
(如普通对话、文本翻译)能够被准确识别和处理。 工作流节点设计 选取工作流的几个重要节点,每个节点负责特定的任务。以下是各节点的功能和设计思路: 开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。 意图识别节
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
流执行的结果。 调用工作流 Token计算器 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 Token计算器 用户在部署服务的过程中,建议开启“安全护栏”功能,以保证内容的安全性。
型生成在类似情景下可能犯错的攻击性问题。用户可指定生成的攻击性问题个数,个数不超过10。 根据答案推导解题思路 指令通过用户输入的问题和回答,利用大模型生成包含相应解题思路的回答。 指令泛化 根据用户指定风格,进行指令泛化。可与指定要求类的问答对生成相关指令编排,实现问答对泛化 创建自定义数据合成指令
效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 优化器种类 优化器种类 优化器是用于更新模型参数的算法,目前支持ADAM优化器。 第一个动量矩阵的指数衰减率(beta1) 用于定义ADAM优化器中的一阶矩估计的指数衰减率。一阶矩估计相当于动量,可以加速梯度在相关方向的下降并抑制震荡。取值范围:(0
通过在损失函数中加入与模型权重大小相关的惩罚项,鼓励模型保持较小的权重,防止过拟合或模型过于复杂。 优化器 优化器参数用于更新模型的权重,常见包括adamw。 adamw是一种改进的Adam优化器,增加了权重衰减机制,有效防止过拟合。 模型保存步数 每训练一定数量的步骤(或批次),模型的
的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。 取值范围:[0,1]。 优化器参数 优化器种类 优化器种类。优化器是用于更新模型参数的算法,目前支持ADAM优化器。 第一个动量矩阵的指数衰减率 数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效
”,可使用获取提示词模板中的提示词模板。 图1 提示词 提示词填写完成后可通过大模型进行优化,单击“”,可在 “Prompt优化”窗口中复制优化后的提示词,单击“确定”。 注意,使用智能优化提示词功能前,请先在页面右上角选择需要使用的模型。 图2 配置大模型 步骤3:添加插件 应
入框中将自动填入角色指令模板。 示例如图2,您可以依据模板进行填写。 图2 配置Prompt 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 步骤3:添加预置插件 应用支持添加插件技能,可添加“预置插件”和“个人插件”。添加插件可以为应
理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具