检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ning)以优化模型性能。修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0.png,脚本里写到pokemon-dataset路径即可。 kohya_finetune.toml文件里数据集路径更改为pokemon-dataset路径。
否,忽略此步骤,执行下一步; ②修改yaml文件路径:修改demo.sh最后一行代码,将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,例如将以下命令 修改前 FORCE_TORCHRUN=1
否,忽略此步骤,执行下一步; ②修改yaml文件路径:修改demo.sh最后一行代码,将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,例如将以下命令 修改前 FORCE_TORCHRUN=1
如需其他配置参数,可参考表1按照实际需求修改 Step3 启动训练脚本 启动训练前需修改启动训练脚本demo.sh 内容。具体请参考•修改启动脚本。 对于falcon-11B训练任务开始前,需手动替换tokenizer中的config.json,具体请参见falcon-11B模型。 修改完yaml配置文
所有的删除操作均不可恢复,请谨慎操作。 修改标注 当数据完成标注后,您还可以进入“已标注”页签,对已标注的数据进行修改。 基于音频修改 在数据集详情页,单击“已标注”页签,然后在音频列表中选中待修改的音频(选择一个或多个)。在右侧标签信息区域中对标签进行修改。 修改标签:在“选中文件标签”区域
如需其他配置参数,可参考表1按照实际需求修改。 Step3 启动训练脚本 修改完yaml配置文件后,启动训练脚本。模型不同最少NPU卡数不同,NPU卡数建议值可参考表1。 修改启动脚本demo.sh 进入代码目录{work_dir}/llm_train/LLaMAFactory下修改启动脚本,其中{w
化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0.png,脚本里写到pokemon-dataset路径即可。 将kohya_finetune.toml文件里数据集路径更改为pokemon-dataset路径。
务变化,修改用于标注的标签。支持添加、修改和删除标签。 添加标签 在“未标注”页签下,单击“标签集”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标签”的下方操作列,选择需要修改的标签,单
更新数据集 功能介绍 修改数据集的基本信息,如数据集名称、描述、当前版本或标签等信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{projec
subscriptable”。 原因分析 根据报错日志分析,是因为一个float数据被当做对象下标访问了。 处理方法 将模型推理代码中的x[0][i]修改为x[i],重新部署服务进行预测。 父主题: 服务预测
修改Workflow工作流 功能介绍 更新Workflow工作流信息。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v2/{project
“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法: 方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。 父主题: 业务代码问题
签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts为用户提供了标注数据的能力: 人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:
管理团队和团队成员 修改成员信息 团队中的成员,当其信息发生变化时,可以编辑其基本情况。 在“团队详情”区域,选择需修改的成员。 在成员所在行的“操作”列,单击“修改”。在弹出的对话框中,修改其“描述”或“角色”。 成员的“邮箱”无法修改,如果需要修改邮箱地址,建议先删除此成员,然后再基于新的邮箱地址添加新成员。
签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。
由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae.safetensors文件路径。
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae.safetensors文件路径。
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
m、dict、list。开发者可根据场景需要,将节点中的相关字段(如算法超参)通过Placeholder的形式透出,支持设置默认值,供用户修改配置使用。 属性总览(Placeholder) 属性 描述 是否必填 数据类型 name 参数名称,需要保证全局唯一。 是 str placeholder_type