检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
hanghai 云数据库RDS: https://support.huaweicloud.com/rds/index.html sdk.memory.rds.user sdk.memory.rds.password 用户认证信息。 设置的用户/密码。 Mysql 否 sdk.memory
加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响
install gptcache~=0.1.37 pip install redis-om~=0.1.3 pip install pymysql~=1.1.0 pip install SQLAlchemy~=2.0.19 API手册 API手册请参见SDK API 手册。 父主题:
of("inMemory") # Redis redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和用户cache会话下对应的答案2保存到缓存中,参考示例如下:
Cache cache = Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和对应的答案2保存到缓存中,可参考以下示例。
erverTimezone=Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= ################################ DOC
Asia/Shanghai ; # # sdk.memory.rds.url= # sdk.memory.rds.user= # sdk.memory.rds.password= # sdk.memory.rds.poolSize= ################################
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式,如内存、DCS(Redis)、RDS(Sql)。 import com.huaweicloud.pangu.dev.sdk.api.memory.config.MessageHistoryConfig;
History缓存,用于存储历史对话信息,辅助模型理解上下文信息,历史消息对有固定窗口、消息摘要等策略。 初始化:消息记录支持不同的存储方式, 如内存、DCS(Redis)和RDS(Sql)。 from pangukitsappdev.memory.sql_message_history import SQLMessageHistory
"description")) .build()); 定义一个ToolRetriever包含ToolProvider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProv
provider, vector_config) 定义一个ToolRetriever包含2个参数,一个ToolProvider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
常见问题 使用java sdk出现第三方库冲突 当出现第三方库冲突的时,如Jackson,okhttp3版本冲突等。可以引入如下bundle包(3.0.40-rc版本后),该包包含所有支持的服务和重定向了SDK依赖的第三方软件,避免和业务自身依赖的库产生冲突: <dependency>
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
估。 支持对用例集的创建、查询、修改、删除。 提示词工程任务管理 提示词工程平台以提示词工程任务为管理维度,一个任务代表一个场景或一个调优需求,在提示词工程任务下可以进行提示词的调优、比较和评估。 提示词工程任务管理支持工程任务的创建、查询、修改、删除。 提示词调优 提示词调优支
B:我可以做很多事情,比如xxxx A:你可以讲个笑话吗? B:当然可以啦,以下是xxxx A:可以把这个笑话改成xxxx B:好的,以下是修改后的xxxx 拼接后的微调数据格式示例: {"context": ["你是谁?", "您好,我是盘古大模型。", "你可以做什么?", "我可以做很多事情,比如xxxx"
选择模型类型、训练类型以及基础模型。 数据配置 选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。 在训练数据集配比完成后,在单击“创建”或后续修改保存时,会对数据集的有效数据进行统计,确保满足模型训练的要求。 图3 数据配置 基本配置 填写训练数据集名称和描述,选择数据标签。 图4 基本配置
问题或回答中带有不需要的特定格式内容或者时间戳等。 通过编写代码、正则表达式等进行处理,删除或者修改对应的内容,或者直接过滤掉整条数据。 2 原始数据不符合特定微调数据的格式。 通过编写代码进行处理,修改为特定微调格式的数据,例如对于阅读理解微调数据,需要拼接上阅读理解对应的Prompt。
复上采样方式来扩充数据,但该方法不适用于大模型微调的场景,这将导致模型的过拟合。因此可以通过一些规则来扩充数据,比如:同义词替换、语法结构修改、标点符号替换等,保证数据的多样性。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取目标场景
配置Vector(Python SDK) Embedding Emebedding模块用于对Emebedding模型API的适配封装,提供统一的接口快速地调用CSS等模型emebedding能力。 初始化:根据相应模型定义Emebedding类,如使用华为CSS Embedding为:Embeddings