检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Files按钮,打开文件上传窗口,选择左侧的进入GitHub开源仓库Clone界面。 图1 上传文件图标 图2 进入GitHub开源仓库Clone界面 输入有效的GitHub开源仓库地址后会展示该仓库下的文件及文件夹,说明用户输入了有效的仓库地址,同时给出该仓库下所有的分支供选择,选择完成后单击“克隆”开始Clone仓库。
在ModelArts的Notebook中使用VS Code调试代码无法进入源码怎么办? 如果已有launch.json文件,请直接看步骤三。 步骤一:打开launch.json文件 方法一:单击左侧菜单栏的Run(Ctrl+Shift+D)按钮,再单击create a launch.json
users原始文件做备份,如果没有备份则可以通过删除diffusers包重新安装的方式获取原始文件。 执行bash stable_diffusers_train.sh。 bash stable_diffusers_train.sh Step4 下载模型和数据集 数据集下载地址:https://huggingface
ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径 obs_data_dir= "obs://<bucket_name>/data" # NoteBook存放数据路径 local_data_dir=
1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。
910版本新增如下内容: 文档中新增在数据预处理时,支持LLama-Factory格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 Shareg
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendFactory训练代码。 准备镜像 准备训练模型适用的容器镜像。
INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 sort_dir 否 String 排序方式,ASC升序,DESC降序,默认DESC。 sort_key 否 String
gpuVersion String GPU驱动版本,物理资源池中含有GPU规格时可填,例如:"440.33"。 npuVersion String NPU驱动版本,物理资源池中含有ascend规格时可填,例如:"C78"。 updateStrategy String 驱动升级策略。可选值如下:
c_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。 图3 多机同步权重文件 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name>
标注声音分类数据 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 音频标注 在新版自动学习页面单击“实例详
域。 参考上传文件,将本地数据上传至OBS桶中。如果您的数据较多,推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需
910版本新增如下内容: 文档中新增在数据预处理时,支持LLama-Factory格式的模板: 支持Alpaca格式的数据,DATA_TYPE 环境变量需设置为 AlpacaStyleInstructionHandler 支持Sharegpt格式的数据,DATA_TYPE 环境变量需设置为 Shareg
c_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。 图3 多机同步权重文件 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name>
复制数据至容器中空间不足 问题现象 ModelArts训练作业运行时,日志中遇到如下报错,导致数据无法复制至容器中。 OSError:[Errno 28] No space left on device 原因分析 数据下载至容器的位置空间不足。 处理方法 请排查是否将数据下载至“
synchronize_data Boolean 团队标注任务是否同步更新新增数据。可选值如下: true:上传文件、同步数据源、导入的未标注文件同步分配至团队成员。 false:不同步更新新增数据(默认值)。 task_id String 标注任务ID。 task_name String
gpuVersion String GPU驱动版本,物理资源池中含有GPU规格时可填,例如:"440.33"。 npuVersion String NPU驱动版本,物理资源池中含有ascend规格时可填,例如:"C78"。 updateStrategy String 驱动升级策略。可选值如下:
在AI开发过程中,如何将文件方便快速地上传到Notebook几乎是每个开发者都会遇到的问题。ModelArts提供了多种文件上传方式,在文件上传过程中,可以查看上传进度和速度。 将本地文件上传,请参考支持上传本地文件; GitHub的开源仓库的文件上传,请参考支持Clone GitHub开源仓库;
ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径 obs_data_dir= "obs://<bucket_name>/data" # NoteBook存放数据路径 local_data_dir=
问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。 数据处理过程中对数据进行解压,导致数据大小膨胀,将"/cache"目录空间用完。 数据未保存至/cache目录或者