检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
id from league_creator.tax 系统提示不支持进行敏感数据的SELECT操作。 图3 不支持敏感操作 若试图在敏感数据中追加自己的数据, 从结果倒推敏感数据,即求原数据。 Select tax_bal + electric_bal from
企业A完成信息选择后,单击“保存并提交审批”即可向数据提供方企业B发送一条审批信息。 企业B在自己的计算节点上可以单击“审批管理”,选择“待处理”的实时隐匿查询作业审批,可以看到自己的数据被如何使用。待企业B同意审批之后,企业A可以开始执行实时隐匿查询作业。 父主题: 外部数据共享
企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017bb5b7”这样的一条数据,查询结果中即会返回企业A所选择的企业B的数据字段。
空间成员完成计算节点部署,配置参数时选择挂载方式和计算节点,参考部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 仅IEF计算节点支持创建横向评估型作业。 创建可信联邦学习评估型作业 用户登录进入计算节点页面。
多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum(
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
从上面两张表可以看出: (1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训练集均匀划
空间组建完成,参考组建空间。 空间成员完成计算节点部署,配置参数时选择存储方式和数据目录,参考4.1 部署计算节点。 空间成员完成数据集准备工作,参考准备本地横向联邦数据资源。 空间成员在数据目录中完成数据发布,参考4.6.4 发布数据。 对接MA的计算节点如果是使用子账号进行创建的,需要参考配置
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
隐私求交是可信智能计算服务提供的安全获取参与双方所持数据交集的功能。它允许参与计算的双方,在不获取对方任何额外信息(除交集外的其它信息)的基础上,得到双方持有数据的交集。 单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部分数据与对方的数据,通过创建并执行可信
开发页面编写SQL语句。SQL语句开发完成后单击“保存”。 在作业开发页面“合作方数据”一栏可查看此空间合作方共享的数据。 数据第一级是合作方名称,第二级是数据名称。 SQL语句中用“合作方名.数据名”表示一张表。 SQL语句开发完成, 可单击页面上方“格式化”来对排版进行美化 图3
邀请云租户作为数据提供方,动态构建可信计算空间,实现空间内严格可控的数据使用和监管。 数据融合分析 支持对接多个数据参与方的主流数据存储系统,为数据消费者实现多方数据的SQL Join等融合分析,各方的敏感数据在具有安全支撑的聚合计算节点中实现安全统计。 计算节点 数据参与方使用数
id from league_creator.tax 系统提示不支持进行敏感数据的SELECT操作。 图3 不支持敏感操作 示例二: 若试图在敏感数据中追加自己的数据, 从结果倒推敏感数据,即求原数据。 Select tax_bal + electric_bal from
现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问题。随着隐私计算等技术为数据要素的有效流通提供了必要手段,多方数据联合风控成为新趋势。其中,黑名单共享查询是风控中的
参与方登录区块链服务(BCS)按照组建联盟链中“同意/拒绝邀请”部分的描述,创建BCS实例并加入联盟链。 发起方、参与方各自根据合约仓库章节中下载模板的描述,下载“数据上链存证和查询合约模板(又称链代码)”并保存到本地。 发起方、参与方各自按照链代码管理章节中“安装链代码”部分的描述,上传步骤4中已保存至本地的链代码压缩包。
练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic Regression模型本质上还是线性模型,因此模型文件result_10为该线性模型的系数加上偏置项。 图2 查看模型结果文件 本地利用测试集评估
在创建页面填写如下信息: 作业名称。 作业描述可按需填写。 勾选参与双方的数据集,同时单击右侧已选数据集的对齐列框选择需要求交集的字段信息。 对齐列只能选择非敏感的唯一标识。 选择求交算法。 选择椭圆曲线。 选择大数据量节点。 配置重试参数。开关开启后,执行失败的作业会根据配置定时进行
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。