检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为模型启动失败。 需要检查两个地方:自定义镜像中的代码开放的端口和创建模型界面上配置的端口。确认两处端口保持一致。模型创建界面如果不填端口信息,则ModelArts会默认监听8080端口,即镜像代码中启用的端口必须是8080。 图2 自定义镜像中的代码开放的端口 图3 创建模型界面上配置的端口
华为云服务在内网互相调用使用的域名,避免使用外部已备案域名。 所有中国大陆境内下沉POD区服务使用的域名已完成备案。 所有中国大陆境内下沉POD区的服务均遵守国家《互联网信息服务管理办法》要求。 父主题: 安全
方法二:设置远端默认安装的插件 按照VS Code中设置远端默认安装的插件配置,即会在连接远端时自动安装,减少等待时间。 方法三:VS Code官网排查方式https://code.visualstudio.com/docs/remote/troubleshooting 小技巧(按需调整远端连接的相关参数):
r”已重命名为“learning_rate”,在训练代码中必须写成“learning_rate”才能调用成功。keras官方文档请参见https://github.com/keras-team/keras/releases/tag/2.3.0。 处理方法 将训练代码里的参数名称“
如无法访问公网则需配置代理,增加`--build-arg`参数指定代理地址确保访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx
ma-user:ma-group coco 代码云上适配 下载YOLOX代码。代码仓地址:https://github.com/Megvii-BaseDetection/YOLOX.git。 git clone https://github.com/Megvii-BaseDetection/YOLOX
如无法访问公网则需配置代理,增加`--build-arg`参数指定代理地址确保访问公网。 docker build --build-arg "https_proxy=http://xxx.xxx.xxx.xxx" --build-arg "http_proxy=http://xxx.xxx
池,您可参考创建Standard专属资源池来进行创建。 专属资源池创建成功后,可在查看Standard专属资源池详情中查看专属资源池的详细信息。 如果专属资源池的规格与您的业务不符,可通过扩缩容Standard专属资源池来调整专属资源池的规格。 每个用户对集群的驱动要求不同,在专
##安装obsutil,完成AKSK配置。建议在基础镜像里做好。 #mkdir -p /opt && cd /opt #wget https://obs-community.obs.cn-north-1.myhuaweicloud.com/obsutil/current/obsutil_linux_amd64
##安装obsutil,完成AKSK配置。建议在基础镜像里做好。 #mkdir -p /opt && cd /opt #wget https://obs-community.obs.cn-north-1.myhuaweicloud.com/obsutil/current/obsutil_linux_amd64
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
训练迁移适配 完成环境准备之后,本节将详细介绍Dit模型训练迁移过程。 执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
包括MindSpore、PyTorch。适用于Standard开发环境,模型训练,服务部署,请参考下表。镜像的URL、包含的依赖项等详细信息请参考ModelArts统一镜像列表。 表1 MindSpore 预置镜像 适配芯片 适用范围 适用区域 mindspore_2.3.0-cann_8