检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。
订阅提醒 勾选订阅提醒,并添加手机号/邮箱,系统将在训练任务完成或重要事件发生时,发送提醒。 表2 部署实例量与推理单元数关系 模型类型 推理资源 盘古-NLP-N1系列模型 4K版本: 当部署一个实例时,占用0.125个推理单元。
import com.huaweicloud.pangu.dev.sdk.api.llms.config.LLMConfig; import com.huaweicloud.pangu.dev.sdk.api.llms.config.LLMModuleConfig; // 设置模型系统人设
fewShotPromptTemplate,得到最终fewShotPrompt String prompt = fewShotPromptTemplate.format(inputs); 自定义prompt // 按约定的格式准备prompt文件; // 文档结构和文件名参考提供的系统预置
在环境变量中配置“SDK_CONF_PATH”指向该配置文件: # 建议在业务项目入口处配置 import os os.environ["SDK_CONFIG_PATH"] = ".
无论是文本分类、情感分析、机器翻译,还是问答系统,模型都能以高准确率完成任务,为用户提供高质量的输出结果。 这种卓越的表现源于其先进的算法和深度学习架构。盘古大模型能够深入理解语言的内在逻辑与语义关系,因此在处理复杂语言任务时展现出更高的精准度和效率。
参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。
参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。
ConversationMessage(role=Role.USER, content="具体介绍一下")] pangu_llm = LLMs.of("pangu", llm_config) pangu_llm.ask(messages).answer 带人设的问答:支持在LLM配置项中设置人设,在LLM问答时系统会自动加上该人设
长江中的鱼类多样性体现了其丰富的生态系统,但近年来由于过度捕捞、生境破坏和污染等问题,长江中的许多鱼类种群数量急剧下降,特别是一些特有物种面临濒危。保护长江生态系统和其中的生物多样性已经成为当务之急。"
预置模型:系统提供的LLM(大语言)预置模型。 我的模型:经过用户预训练或者微调训练后的模型。 模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。 训练参数说明和调参策略请参见有监督微调(全量微调)训练参数说明、表5。
cssToolRetriever.remove([tool.name for tool in tool_list]) 其中,有两个变化值得关注,一是为ToolRetriever添加了一个query_preprocessor,它的作用为对用户输入的多轮对话进行改写,会将改写后的结果作为工具检索的输入,这里使用了系统内置的
Tool::getToolId).collect(Collectors.toList())); 有两个变化值得关注,一是为ToolRetriever添加了一个queryPreprocessor,它的作用为对用户输入的多轮对话进行改写,会将改写后的结果作为工具检索的输入,这里使用了系统内置的
gradio as gr from pangukitsappdev.api.llms.llm_config import LLMParamConfig from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ
# Pangu # Examples: https://{endPoint}/v1/{projectId}/deployments/{deploymentId} ; # sdk.llm.pangu.url= 创建代码文件(doc_summary.py),示例如下: import os
AgentSessionHelper.set_user_feedback(session, "改为欠税信息") # 预期Agent返回reportType为欠税信息体检的Json,呈现给终端用户 session = agent.run_step(session) # 终端用户确认,调用外部系统